Tailoring DNA structure to increase target hybridization kinetics on surfaces
- PMID: 20681682
- PMCID: PMC3918422
- DOI: 10.1021/ja104859j
Tailoring DNA structure to increase target hybridization kinetics on surfaces
Erratum in
- J Am Chem Soc. 2010 Nov 17;132(45):16296
Abstract
We report a method for increasing the rate of target hybridization on DNA-functionalized surfaces using a short internal complement DNA (sicDNA) strand. The sicDNA causes up to a 5-fold increase in association rate by inducing a conformational change that extends the DNA away from the surface, making it more available to bind target nucleic acids. The sicDNA-induced kinetic enhancement is a general phenomenon that occurred with all sequences and surfaces investigated. Additionally, the process is selective and can be used in multicomponent systems to controllably and orthogonally "turn on" specific sequences by the addition of the appropriate sicDNA. Finally, we show that sicDNA is compatible with systems used in gene regulation, intracellular detection, and microarrays, suggesting several potential therapeutic, diagnostic, and bioinformatic applications.
Figures





Similar articles
-
Effects of polyethylene glycol on DNA adsorption and hybridization on gold nanoparticles and graphene oxide.Langmuir. 2012 Oct 9;28(40):14330-7. doi: 10.1021/la302799s. Epub 2012 Sep 28. Langmuir. 2012. PMID: 22989102
-
Hairpin DNA switch for ultrasensitive spectrophotometric detection of DNA hybridization based on gold nanoparticles and enzyme signal amplification.Anal Chem. 2010 Aug 1;82(15):6440-6. doi: 10.1021/ac1006238. Anal Chem. 2010. PMID: 20608643
-
Sterically controlled docking of gold nanoparticles on ferritin surface by DNA hybridization.Nanotechnology. 2011 Jul 8;22(27):275312. doi: 10.1088/0957-4484/22/27/275312. Epub 2011 May 26. Nanotechnology. 2011. PMID: 21613737
-
Strategies for optimizing DNA hybridization on surfaces.Anal Biochem. 2014 Jan 1;444:41-6. doi: 10.1016/j.ab.2013.09.032. Epub 2013 Oct 9. Anal Biochem. 2014. PMID: 24121011 Review.
-
Recent advances in self-assembled fluorescent DNA structures and probes.Curr Top Med Chem. 2015;15(13):1162-78. doi: 10.2174/1568026615666150330110131. Curr Top Med Chem. 2015. PMID: 25858134 Review.
Cited by
-
Spherical nucleic acids-based nanoplatforms for tumor precision medicine and immunotherapy.Mater Today Bio. 2023 Jul 26;22:100750. doi: 10.1016/j.mtbio.2023.100750. eCollection 2023 Oct. Mater Today Bio. 2023. PMID: 37545568 Free PMC article. Review.
-
Bioinspired nanocomplex for spatiotemporal imaging of sequential mRNA expression in differentiating neural stem cells.ACS Nano. 2014 Dec 23;8(12):12386-96. doi: 10.1021/nn505047n. Epub 2014 Dec 12. ACS Nano. 2014. PMID: 25494492 Free PMC article.
-
Isothermal discrimination of single-nucleotide polymorphisms via real-time kinetic desorption and label-free detection of DNA using silicon photonic microring resonator arrays.Anal Chem. 2011 Sep 1;83(17):6827-33. doi: 10.1021/ac201659p. Epub 2011 Aug 11. Anal Chem. 2011. PMID: 21834517 Free PMC article.
-
Spherical nucleic acids: Organized nucleotide aggregates as versatile nanomedicine.Aggregate (Hoboken). 2022 Feb;3(1):e120. doi: 10.1002/agt2.120. Epub 2021 Sep 14. Aggregate (Hoboken). 2022. PMID: 35386748 Free PMC article.
-
Duplex end breathing determines serum stability and intracellular potency of siRNA-Au NPs.Mol Pharm. 2011 Aug 1;8(4):1285-91. doi: 10.1021/mp200084y. Epub 2011 Jun 28. Mol Pharm. 2011. PMID: 21630673 Free PMC article.
References
-
- Wang K, Tang Z, Yang CJ, Kim Y, Fang X, Li W, Wu Y, Medley CD, Cao Z, Li J, Colon P, Lin H, Tan W. Angew. Chem., Int. Ed. 2009;48:856–870. - PMC - PubMed
- Moses S, Brewer SH, Lowe LB, Lappi SE, Gilvey LBG, Sauthier M, Tenent RC, Feldheim DL, Franzen S. Langmuir. 2004;20:11134–11140. - PubMed
- Katz E, Willner I. Angew. Chem., Int. Ed. 2004;43:6042–6108. - PubMed
- Rosi NL, Mirkin CA. Chem. Rev. 2005;105:1547–1562. - PubMed
- Bath J, Turberfield AJ. Nat. Nanotechnol. 2007;2:275–284. - PubMed
-
- Seelig G, Yurke B, Winfree E. J. Am. Chem. Soc. 2006;128:12211–12220. - PubMed
- Wei HR, Kuan PF, Tian SL, Yang CH, Nie J, Sengupta S, Ruotti V, Jonsdottir GA, Keles S, Thomson JA, Stewart R. Nucleic Acids Res. 2008;36:2926–2938. - PMC - PubMed
- Gao Y, Wolf LK, Georgiadis RM. Nucleic Acids Res. 2006;34:3370–3377. - PMC - PubMed
- Wang YF, Zhang Y, Ong NP. Phys. Rev. E. 2005;72:051918. - PubMed
- Leunissen ME, Dreyfus R, Cheong FC, Grier DG, Sha R, Seeman NC, Chaikin PM. Nat. Mater. 2009;8:590–595. - PubMed
-
- Riccelli PV, Merante F, Leung KT, Bortolin S, Zastawny RL, Janeczko R, Benight AS. Nucleic Acids Res. 2001;29:996–1004. - PMC - PubMed
- Yuan BF, Zhuang XY, Hao YH, Tan Z. Chem. Commun. 2008:6600–6602. - PubMed
- Vasiliskov VA, Prokopenko DV, Mirzabekov AD. Nucleic Acids Res. 2001;29:2303–2313. - PMC - PubMed
- O’Meara D, Nilsson P, Nygren PA, Uhlen M, Lundeberg J. Anal. Biochem. 1998;255:195–203. - PubMed
-
- Maye MM, Nykypanchuk D, van der Lelie D, Gang O. J. Am. Chem. Soc. 2006;128:14020–14021. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources