Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul;30(7):2755-67.

PTHrP regulates angiogenesis and bone resorption via VEGF expression

Affiliations
  • PMID: 20683010

PTHrP regulates angiogenesis and bone resorption via VEGF expression

Sachiko Isowa et al. Anticancer Res. 2010 Jul.

Abstract

Background: Parathyroid hormone-related protein (PTHrP) is a key regulator of osteolytic metastasis of breast cancer (BC) cells, but its targets and mechanisms of action are not fully understood. This study investigated whether/how PTHrP (1-34) signaling regulates expression of vascular endothelial growth factor (VEGF) produced by BC cells.

Materials and methods: A mouse model of bone metastasis was prepared by inoculating mice with tumour cell suspensions of the human BC cell line MDA-MB-231 via the left cardiac ventricle. VEGF expression was examined by Western blot and real-time RT-PCR analysis, as well as by confocal microscopy in the bone microenvironment.

Results: PTHrP was expressed in cancer cells producing PTH/PTHrP receptor and VEGF that had invaded the bone marrow, and PTHrP was up-regulated VEGF in MDA-MB-231 in vitro. The culture medium conditioned by PTHrP-treated MDA-MB-231 cells stimulated angiogenesis and osteoclastogenesis compared with control medium, giving a response that was inhibited by VEGF-neutralizing antibody treatment. Inhibition of protein kinase C (PKC) prevented PTHrP-induced extracellular signal-regulated kinase (ERK1/2) and p38 activation, and PTHrP-induced VEGF expression.

Conclusion: PTHrP plays an important role in modulating the angiogenic and bone osteolytic actions of VEGF through PKC-dependent activation of an ERK1/2 and p38 signaling pathway during bone metastasis by breast cancer cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources