Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Nov-Dec;62(3):196-220.
doi: 10.1016/j.vascn.2010.05.009. Epub 2010 May 31.

The utility of the minipig as an animal model in regulatory toxicology

Affiliations
Review

The utility of the minipig as an animal model in regulatory toxicology

Gerd Bode et al. J Pharmacol Toxicol Methods. 2010 Nov-Dec.

Abstract

In this article we review the value and utility of the minipig as an animal model in regulatory toxicity testing. Our review is based on detailed consideration of the comparative biology of the minipig, and of the practical features of toxicity testing in the minipig. The minipig presents a favourable profile as a non-rodent toxicology model, in terms of the similarity to man and also in terms of applicability to different study types. Studies of general toxicology can be performed in the minipig by oral, cutaneous, parenteral and inhalation routes. For reproductive toxicology studies the minipig offers numerous advantages as a non-rodent model although the lack of placental transfer of macromolecules may limit the role of the minipig in reproductive testing of biotechnology products. For safety pharmacology studies the minipig is an advantageous model, particularly as regards the cardiovascular system. The immune system of the pig is better characterized than that of the dog, making the pig an interesting alternative model to the nonhuman primate for therapeutic approaches based on manipulation of the immune system. Overall, this review leads us to believe that the minipig might be a better non-rodent toxicology model than the dog. At the present time, however, insufficient comparative data is available to permit a rigorous evaluation of the predictivity of the minipig for human drug-induced toxicities and research is urgently needed to provide experimental data for evaluation of the hypothesis that minipig studies may better reflect human drug-induced toxicities than studies performed in traditional non-rodent toxicology models. It would be of particular value to gain a better vision of the potential utility of the minipig as a model for the safety testing of new biologics, where the minipig could potentially replace the use of non-human primates in the testing of some new products.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources