Rapid evolution of cold tolerance in stickleback
- PMID: 20685715
- PMCID: PMC3013383
- DOI: 10.1098/rspb.2010.0923
Rapid evolution of cold tolerance in stickleback
Abstract
Climate change is predicted to lead to increased average temperatures and greater intensity and frequency of high and low temperature extremes, but the evolutionary consequences for biological communities are not well understood. Studies of adaptive evolution of temperature tolerance have typically involved correlative analyses of natural populations or artificial selection experiments in the laboratory. Field experiments are required to provide estimates of the timing and strength of natural selection, enhance understanding of the genetics of adaptation and yield insights into the mechanisms driving evolutionary change. Here, we report the experimental evolution of cold tolerance in natural populations of threespine stickleback fish (Gasterosteus aculeatus). We show that freshwater sticklebacks are able to tolerate lower minimum temperatures than marine sticklebacks and that this difference is heritable. We transplanted marine sticklebacks to freshwater ponds and measured the rate of evolution after three generations in this environment. Cold tolerance evolved at a rate of 0.63 haldanes to a value 2.5°C lower than that of the ancestral population, matching values found in wild freshwater populations. Our results suggest that cold tolerance is under strong selection and that marine sticklebacks carry sufficient genetic variation to adapt to changes in temperature over remarkably short time scales.
Figures



Similar articles
-
Genome-Wide DNA Methylation Profiling Reveals Epigenetic Adaptation of Stickleback to Marine and Freshwater Conditions.Mol Biol Evol. 2017 Sep 1;34(9):2203-2213. doi: 10.1093/molbev/msx156. Mol Biol Evol. 2017. PMID: 28873953
-
A low-density SNP array for analyzing differential selection in freshwater and marine populations of threespine stickleback (Gasterosteus aculeatus).BMC Genomics. 2014 Oct 6;15(1):867. doi: 10.1186/1471-2164-15-867. BMC Genomics. 2014. PMID: 25286752 Free PMC article.
-
Fast evolution from precast bricks: genomics of young freshwater populations of threespine stickleback Gasterosteus aculeatus.PLoS Genet. 2014 Oct 9;10(10):e1004696. doi: 10.1371/journal.pgen.1004696. eCollection 2014 Oct. PLoS Genet. 2014. PMID: 25299485 Free PMC article.
-
Toward conservation of genetic and phenotypic diversity in Japanese sticklebacks.Genes Genet Syst. 2016 Oct 13;91(2):77-84. doi: 10.1266/ggs.15-00082. Epub 2016 Jun 10. Genes Genet Syst. 2016. PMID: 27301281 Review.
-
The genetic and molecular architecture of phenotypic diversity in sticklebacks.Philos Trans R Soc Lond B Biol Sci. 2017 Feb 5;372(1713):20150486. doi: 10.1098/rstb.2015.0486. Philos Trans R Soc Lond B Biol Sci. 2017. PMID: 27994127 Free PMC article. Review.
Cited by
-
The Effects of Quantitative Trait Architecture on Detection Power in Short-Term Artificial Selection Experiments.G3 (Bethesda). 2020 Sep 2;10(9):3213-3227. doi: 10.1534/g3.120.401287. G3 (Bethesda). 2020. PMID: 32646912 Free PMC article.
-
Transgenerational plasticity and selection shape the adaptive potential of sticklebacks to salinity change.Evol Appl. 2018 Aug 22;11(10):1873-1885. doi: 10.1111/eva.12688. eCollection 2018 Dec. Evol Appl. 2018. PMID: 30459835 Free PMC article.
-
Adaptive phenotypic plasticity and local adaptation for temperature tolerance in freshwater zooplankton.Proc Biol Sci. 2013 Dec 18;281(1776):20132744. doi: 10.1098/rspb.2013.2744. Print 2014 Feb 7. Proc Biol Sci. 2013. PMID: 24352948 Free PMC article.
-
Thermal tolerance and vulnerability to warming differ between populations of wild Oncorhynchus mykiss near the species' southern range limit.Sci Rep. 2023 Sep 4;13(1):14538. doi: 10.1038/s41598-023-41173-7. Sci Rep. 2023. PMID: 37666931 Free PMC article.
-
Competitive history shapes rapid evolution in a seasonal climate.Proc Natl Acad Sci U S A. 2021 Feb 9;118(6):e2015772118. doi: 10.1073/pnas.2015772118. Proc Natl Acad Sci U S A. 2021. PMID: 33536336 Free PMC article.
References
-
- Crowley T. J., North G. R. 1988. Abrupt climate change and extinction events in earth history. Science 240, 996–100210.1126/science.240.4855.996 (doi:10.1126/science.240.4855.996) - DOI - DOI - PubMed
-
- Deutsch C., Tewksbury J., Huey R., Sheldon K., Ghalambor C., Haak D., Martin P. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–667210.1073/pnas.0709472105 (doi:10.1073/pnas.0709472105) - DOI - DOI - PMC - PubMed
-
- Hoffmann A. A., Hallas R. J., Dean J. A., Schiffer M. 2003. Low potential for climatic stress adaptation in a rainforest Drosophila species. Science 301, 100–10210.1126/science.1084296 (doi:10.1126/science.1084296) - DOI - DOI - PubMed
-
- Huey R. B., Deutsch C. A., Tewksbury J. J., Vitt L. J., Hertz P. E. 2009. Why tropical lizards are vulnerable to climate warming. Proc. R. Soc. B 276, 1939–194810.1098/rspb.2008.1957 (doi:10.1098/rspb.2008.1957) - DOI - DOI - PMC - PubMed
-
- Malcolm J. R., Liu C., Neilson R. P., Hansen L. 2006. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20, 538–54810.1111/j.1523-1739.2006.00364.x (doi:10.1111/j.1523-1739.2006.00364.x) - DOI - DOI - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources