Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jan 1;89(1):166-74.
doi: 10.1093/cvr/cvq257. Epub 2010 Aug 4.

Non-invasive characterization of the area-at-risk using magnetic resonance imaging in chronic ischaemia

Affiliations

Non-invasive characterization of the area-at-risk using magnetic resonance imaging in chronic ischaemia

Ming Wu et al. Cardiovasc Res. .

Abstract

Aims: we investigated the performance of quantitative stress perfusion magnetic resonance imaging (MRI) as a basis for identifying and characterizing the area-at-risk subtending a chronic coronary artery (CA) stenosis.

Methods and results: pigs underwent a percutaneous copper-coated stent implantation in the circumflex CA (n = 11) or a sham operation (n = 5). After 6 weeks, angiography and MRI were performed including cine (rest, low- and high-dose dobutamine stress), dual-bolus first-pass perfusion (rest and adenosine stress), and contrast-enhanced imaging to quantify myocardial infarction (MI). Myocardial blood flow (MBF) was quantified based on Fermi-model deconvolution and compared with microsphere measurements. On the basis of Evan's blue staining, MBF thresholds to define the area-at-risk were determined by receiver-operating characteristic (ROC) analysis. CA stenosis was 94 ± 7% and infarct size (IS) 7.3 ± 3.1% of left ventricular mass. Segmental thresholds of hyperaemic MBF yielded the best performance for detecting area-at-risk. There was a good correlation between MRI and microsphere perfusion (r(2) = 0.84, P < .0001). The area-at-risk presented a mixed substrate of non-infarcted (non-MI), <50% infarcted (MI+), and >50% infarcted (MI++) segments. MBF was reduced in at-risk vs. remote segments at rest (non-MI, 0.50 ± 0.21; MI+, 0.47 ± 0.14; MI++, 0.42 ± 0.14; remote, 0.84 ± 0.25 mL/min/g) and during stress (non-MI, 0.69 ± 0.09; MI+, 0.66 ± 0.14; MI++, 0.51 ± 0.11; remote, 1.70 ± 0.36 mL/min/g). Segmental wall thickening showed different responses to stress (remote, progressive increase during incremental stress; non-MI, increase at low-dose and discontinued at high-dose; MI+, initial increase and decrease at high-dose; MI++, progressive decrease).

Conclusion: quantitative hyperaemic perfusion MRI accurately defines segments in the area-at-risk in chronic ischaemia, which present with different functional response to stress related to segmental IS.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources