Genomic signatures of germline gene expression
- PMID: 20686123
- PMCID: PMC2963814
- DOI: 10.1101/gr.106666.110
Genomic signatures of germline gene expression
Abstract
Transcribed regions in the human genome differ from adjacent intergenic regions in transposable element density, crossover rates, and asymmetric substitution and sequence composition patterns. We tested whether these differences reflect selection or are instead a byproduct of germline transcription, using publicly available gene expression data from a variety of germline and somatic tissues. Crossover rate shows a strong negative correlation with gene expression in meiotic tissues, suggesting that crossover is inhibited by transcription. Strand-biased composition (G+T content) and A → G versus T → C substitution asymmetry are both positively correlated with germline gene expression. We find no evidence for a strand bias in allele frequency data, implying that the substitution asymmetry reflects a mutation rather than a fixation bias. The density of transposable elements is positively correlated with germline expression, suggesting that such elements preferentially insert into regions that are actively transcribed. For each of the features examined, our analyses favor a nonselective explanation for the observed trends and point to the role of germline gene expression in shaping the mammalian genome.
Figures





Similar articles
-
Germline DNA replication timing shapes mammalian genome composition.Nucleic Acids Res. 2018 Sep 19;46(16):8299-8310. doi: 10.1093/nar/gky610. Nucleic Acids Res. 2018. PMID: 29986092 Free PMC article.
-
Genome organization and gene expression shape the transposable element distribution in the Drosophila melanogaster euchromatin.PLoS Genet. 2007 Nov;3(11):e210. doi: 10.1371/journal.pgen.0030210. Epub 2007 Oct 10. PLoS Genet. 2007. PMID: 18081425 Free PMC article.
-
Reciprocal crossover asymmetry and meiotic drive in a human recombination hot spot.Nat Genet. 2002 Jul;31(3):267-71. doi: 10.1038/ng910. Epub 2002 Jun 24. Nat Genet. 2002. PMID: 12089523
-
The germline in C. elegans: origins, proliferation, and silencing.Int Rev Cytol. 2001;203:139-85. doi: 10.1016/s0074-7696(01)03006-6. Int Rev Cytol. 2001. PMID: 11131515 Review.
-
Meiotic recombination and genome evolution in plants.Curr Opin Plant Biol. 2016 Apr;30:82-7. doi: 10.1016/j.pbi.2016.02.003. Epub 2016 Mar 1. Curr Opin Plant Biol. 2016. PMID: 26939088 Review.
Cited by
-
Divergent transcription: a driving force for new gene origination?Cell. 2013 Nov 21;155(5):990-6. doi: 10.1016/j.cell.2013.10.048. Cell. 2013. PMID: 24267885 Free PMC article.
-
Late replicating domains are highly recombining in females but have low male recombination rates: implications for isochore evolution.PLoS One. 2011;6(9):e24480. doi: 10.1371/journal.pone.0024480. Epub 2011 Sep 20. PLoS One. 2011. PMID: 21949720 Free PMC article.
-
Intronic AT skew is a defendable proxy for germline transcription but does not predict crossing-over or protein evolution rates in Drosophila melanogaster.J Mol Evol. 2010 Dec;71(5-6):415-26. doi: 10.1007/s00239-010-9395-2. Epub 2010 Oct 12. J Mol Evol. 2010. PMID: 20938653
-
Transcription-Associated Compositional Skews in Drosophila Genes.Genome Biol Evol. 2018 Jan 1;10(1):269-275. doi: 10.1093/gbe/evx200. Genome Biol Evol. 2018. PMID: 29036491 Free PMC article.
-
Functional complementation between transcriptional methylation regulation and post-transcriptional microRNA regulation in the human genome.BMC Genomics. 2011 Dec 23;12 Suppl 5(Suppl 5):S15. doi: 10.1186/1471-2164-12-S5-S15. Epub 2011 Dec 23. BMC Genomics. 2011. PMID: 22369656 Free PMC article.
References
-
- Bolstad BM, Irizarry RA, Astrand M, Speed TP 2003. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185–193 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources