Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jul 29;6(7):e1000937.
doi: 10.1371/journal.ppat.1000937.

The role of chemokines during viral infection of the CNS

Affiliations
Review

The role of chemokines during viral infection of the CNS

Martin P Hosking et al. PLoS Pathog. .
No abstract available

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Functional roles of chemokines in response to viral infection of the CNS.
Potential roles of chemokines in attracting innate immune cells (A) and lymphocytes (B) into the CNS during acute viral infection. The cartoons emphasize several key points derived from recent studies focusing on experimental infection with neurotropic viruses. (A) Early (days 1–3) after viral infection, activated and/or virally infected astrocytes, microglia, and endothelial cells secrete chemokines that serve to attract myeloid cells to the CNS. Among the earliest cells to respond to viral infection, neutrophils are recruited into the CNS by virtue of CXCR2 responding to ligands expressed within the CNS (e.g., CXCL1). Monocytes are also attracted into the CNS via the chemokine CCL5 and its receptor CCR5. Neutrophils and monocytes participate in the degradation of the blood–brain barrier (BBB), in part through the release of the matrix metalloproteinase MMP-9, and therefore ensure successive infiltration of virus-specific lymphocytes into the CNS. (B) During the acute stage of disease, astrocytes, microglia, neurons, and endothelial cells continue to secrete chemokines, serving to attract activated T lymphocytes, NK cells, and monocytes into the CNS. CD8+ and CD4+ T lymphocytes bearing the receptor CXCR3 and/or CCR5 are attracted by the chemokines CXCL10 and CCL5, respectively, and mediate viral control through direct cytolytic activity and/or cytokine secretion. CXCL12, which signals through CXCR4, may, however, sequester T lymphocytes within the perivascular space and regulate penetration of the parenchyma, thus inhibiting efficient viral clearance.

References

    1. Lane TE, Asensio VC, Yu N, Paoletti AD, Campbell IL, et al. Dynamic regulation of alpha- and beta-chemokine expression in the central nervous system during mouse hepatitis virus-induced demyelinating disease. J Immunol. 1998;160:970–978. - PubMed
    1. Christensen JE, Simonsen S, Fenger C, Sorensen MR, Moos T, et al. Fulminant lymphocytic choriomeningitis virus-induced inflammation of the CNS involves a cytokine-chemokine-cytokine-chemokine cascade. J Immunol. 2009;182:1079–1087. - PubMed
    1. So EY, Kim BS. Theiler's virus infection induces TLR3-dependent upregulation of TLR2 critical for proinflammatory cytokine production. Glia. 2009;57:1216–1226. - PMC - PubMed
    1. Aravalli RN, Hu S, Rowen TN, Palmquist JM, Lokensgard JR. Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus. J Immunol. 2005;175:4189–4193. - PubMed
    1. van Marle G, Henry S, Todoruk T, Sullivan A, Silva C, et al. Human immunodeficiency virus type 1 Nef protein mediates neural cell death: a neurotoxic role for IP-10. Virology. 2004;329:302–318. - PubMed

Publication types

MeSH terms