Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Sep 10;49(38):6726-44.
doi: 10.1002/anie.200906623.

Luminescent carbon nanodots: emergent nanolights

Affiliations

Luminescent carbon nanodots: emergent nanolights

Sheila N Baker et al. Angew Chem Int Ed Engl. .

Abstract

Similar to its popular older cousins the fullerene, the carbon nanotube, and graphene, the latest form of nanocarbon, the carbon nanodot, is inspiring intensive research efforts in its own right. These surface-passivated carbonaceous quantum dots, so-called C-dots, combine several favorable attributes of traditional semiconductor-based quantum dots (namely, size- and wavelength-dependent luminescence emission, resistance to photobleaching, ease of bioconjugation) without incurring the burden of intrinsic toxicity or elemental scarcity and without the need for stringent, intricate, tedious, costly, or inefficient preparation steps. C-dots can be produced inexpensively and on a large scale (frequently using a one-step pathway and potentially from biomass waste-derived sources) by many approaches, ranging from simple candle burning to in situ dehydration reactions to laser ablation methods. In this Review, we summarize recent advances in the synthesis and characterization of C-dots. We also speculate on their future and discuss potential developments for their use in energy conversion/storage, bioimaging, drug delivery, sensors, diagnostics, and composites.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources