Adsorption of nonionic surfactant on silica nanoparticles: structure and resultant interparticle interactions
- PMID: 20687569
- DOI: 10.1021/jp1033799
Adsorption of nonionic surfactant on silica nanoparticles: structure and resultant interparticle interactions
Abstract
Addition of nonionic surfactant, C(12)E(9), to an aqueous dispersion of charge stabilized silica nanoparticles renders particle aggregation reversible. In contrast, aggregation of the same silica particles in aqueous solutions is irreversible. We use a combination of small-angle X-ray scattering (SAXS) and contrast matching small-angle neutron scattering (SANS) to investigate interparticle interactions and microstructure in dispersions of silica particles in aqueous nonionic surfactant solutions. We show that the silica particles interact through a screened Coulombic interaction in aqueous dispersions; interestingly, this interparticle interaction is hard-sphere-like in surfactant solutions. In surfactant solutions, we show that the final surfactant-particle structure can be modeled as 14 micelles adsorbed (on average) on the surface of each silica particle. This gives rise to the short-range interparticle repulsion that makes particle aggregation reversible, and results in the hard sphere interparticle interaction potential. Finally, we show that adsorption of polyethylene imine on the surface of the silica particles prevents adsorption of surfactant micelles on the particle surface.
Similar articles
-
Small-angle neutron scattering study of concentrated colloidal dispersions: the interparticle interactions between sterically stabilized particles.Langmuir. 2005 Oct 25;21(22):9964-9. doi: 10.1021/la050322m. Langmuir. 2005. PMID: 16229515
-
Tuning of nanoparticle-surfactant interactions in aqueous system.J Phys Condens Matter. 2011 Jan 26;23(3):035101. doi: 10.1088/0953-8984/23/3/035101. Epub 2010 Dec 10. J Phys Condens Matter. 2011. PMID: 21406856
-
Effect of nanoparticle size on the morphology of adsorbed surfactant layers.J Phys Chem B. 2010 Apr 1;114(12):4183-91. doi: 10.1021/jp911400j. J Phys Chem B. 2010. PMID: 20205440
-
Nanoparticle self-assembly: from interactions in suspension to polymer nanocomposites.Soft Matter. 2018 Jun 27;14(25):5161-5179. doi: 10.1039/c8sm00430g. Soft Matter. 2018. PMID: 29893402 Review.
-
Influence of Surfactant for Stabilization and Pipeline Transportation of Iron Ore Water Slurry: A Review.ACS Omega. 2022 Aug 12;7(33):28708-28722. doi: 10.1021/acsomega.2c02534. eCollection 2022 Aug 23. ACS Omega. 2022. PMID: 36033703 Free PMC article. Review.
Cited by
-
Adsorption of Nonionic Surfactants (Nonylphenols) on Sandstone Rock via Alcoholic Micellar Solution.Langmuir. 2024 Sep 17;40(37):19430-19440. doi: 10.1021/acs.langmuir.4c01628. Epub 2024 Sep 5. Langmuir. 2024. PMID: 39234789 Free PMC article.
-
Effects of SiO2 Nanoparticles and Polymers on the Rheology of Fluorine-Free Foam.ACS Omega. 2025 Aug 12;10(33):38046-38055. doi: 10.1021/acsomega.5c05275. eCollection 2025 Aug 26. ACS Omega. 2025. PMID: 40893260 Free PMC article.
-
Electrodeposition of High-Quality Ni/SiC Composite Coatings by Using Binary Non-Ionic Surfactants.Molecules. 2023 Apr 10;28(8):3344. doi: 10.3390/molecules28083344. Molecules. 2023. PMID: 37110578 Free PMC article.
-
Use of Nanoparticles in Completion Fluids as Dual Effect Treatments for Well Stimulation and Clay Swelling Damage Inhibition: An Assessment of the Effect of Nanoparticle Chemical Nature.Nanomaterials (Basel). 2023 Jan 18;13(3):388. doi: 10.3390/nano13030388. Nanomaterials (Basel). 2023. PMID: 36770349 Free PMC article.
LinkOut - more resources
Full Text Sources