Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 May;6(5):515-25.
doi: 10.1002/jbmr.5650060514.

Structural studies of the mineral phase of calcifying cartilage

Affiliations

Structural studies of the mineral phase of calcifying cartilage

C Rey et al. J Bone Miner Res. 1991 May.

Abstract

The calcified cartilage of the epiphyseal growth plate of young calves has been studied by x-ray diffraction. Fourier transform infrared spectroscopy, magic angle 31P nuclear magnetic resonance spectroscopy, and chemical composition. The powdered tissue was separated by density centrifugation as a function of mineral content and thus qualitatively of the age of the calcium-phosphorus mineral phase. The individual density centrifugation fractions were examined separately. X-ray diffraction of the samples, especially of the lowest density fractions, revealed very poorly crystalline apatite. Fourier transform infrared spectroscopy and 31P nuclear magnetic resonance spectroscopy revealed the presence of significant amounts of nonapatitic phosphate ions. The concentration of such nonapatitic phosphates increases during the early stages of mineralization but then decreases as the mineral content steadily rises until full mineralization is achieved. The total concentration of carbonate ions was found to be much lower in calcified cartilage than in bone from the same organ (scapula). The carbonate ions are located in both A sites (OH-) and B sites (PO4(3-)), with a distribution similar to that found in bone mineral. However, discrepancies between infrared resolution factors of phosphate and carbonate bands are consistent with a heterogeneous distribution of carbonate ions in poorly organized domains of the solid phase of calcium phosphate. These initial studies permit one to characterize the calcium phosphate mineral phase as a very poorly crystalline, immature calcium phosphate apatite, rich in labile nonapatitic phosphate ions, with a low concentration of carbonate ions compared with bone mineral of the same animal, indeed from the bone of the same organ (scapula).

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources