Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Aug 18;51(33):4400-4402.
doi: 10.1016/j.tetlet.2010.06.075.

Biocatalytic asymmetric formation of tetrahydro-β-carbolines

Affiliations

Biocatalytic asymmetric formation of tetrahydro-β-carbolines

Peter Bernhardt et al. Tetrahedron Lett. .

Abstract

Strictosidine synthase triggers the formation of strictosidine from tryptamine and secologanin, thereby generating a carbon-carbon bond and a new stereogenic center. Strictosidine contains a tetrahydro-β-carboline moiety - an important N-heterocyclic framework found in a range of natural products and synthetic pharmaceuticals. Stereoselective methods to produce tetrahydro-β-carboline enantiomers are greatly valued. We report that strictosidine synthase from Ophiorrhiza pumila utilizes a range of simple achiral aldehydes and substituted tryptamines to form highly enantioenriched (ee >98%) tetrahydro-β-carbolines via a Pictet-Spengler reaction. This is the first example of aldehyde substrate promiscuity in the strictosidine synthase family of enzymes and represents a first step towards developing a general biocatalytic strategy to access chiral tetrahydro-β-carbolines.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Pictet-Spengler reaction catalyzed by strictosidine synthase. The tetrahydro-β-carboline moiety is highlighted in red, the C-C bond formed is shown in bold, and the stereogenic center (C3) is marked with an asterisk.
Figure 2
Figure 2
A) Reaction sequence leading to 3. B) Computer generated models of two diastereomers of 14 docked in RsSTS (RsSTS numbering). Arrows highlight H-2 that is deprotonated to form 3.

Similar articles

Cited by

References

    1. Taylor MS, Jacobsen EN. J. Am. Chem. Soc. 2004;126:10558–10559. - PubMed
    2. Seayad J, Seayad AM, List B. J. Am. Chem. Soc. 2006;128:1086–1087. - PubMed
    3. Raheem IT, Thiara PS, Peterson EA, Jacobsen EN. J. Am. Chem. Soc. 2007;129:13404–13405. - PubMed
    4. Wanner MJ, van der Haas RN, de Cuba KR, van Maarseveen JH, Hiemstra H. Angew. Chem. Int. Ed. Engl. 2007;46:7485–7487. - PubMed
    5. Sewgobind NV, Wanner MJ, Ingemann S, de Gelder R, van Maarseveen JH, Hiemstra H. J. Org. Chem. 2008;73:6405–6408. - PubMed
    6. Klausen RS, Jacobsen EN. Org. Lett. 2009;11:887–890. - PMC - PubMed
    7. Bou-Hamdan FR, Leighton JL. Angew. Chem. Int. Ed. Engl. 2009;48:2403–2406. - PubMed
    1. O'Connor SE, Maresh JJ. Nat. Prod. Rep. 2006;23:532–547. - PubMed
    1. Faber K. Biotransformations in Organic Synthesis. 5th ed. Springer; 2008.
    2. Bornscheuer UT, Kazlauskas RJ. Hydrolases in Organic Synthesis. 2nd ed. Wiley~VCH; 2006.
    1. Kutchan TM, Hampp N, Lottspeich F, Beyreuther K, Zenk MH. FEBS Lett. 1988;237:40–44. - PubMed
    2. McKnight TD, Roessner CA, Devagupta R, Scott AI, Nessler CL. Nucl. Acids Res. 1990;18:4939. - PMC - PubMed
    3. Yamazaki Y, Sudo H, Yamazaki M, Aimi N, Saito K. Plant Cell Physiol. 2003;44:395–403. - PubMed
    1. McCoy EA, Galan MC, O'Connor SE. Bioorg. Med. Chem. Lett. 2006;16:2475–2478. - PubMed
    2. Treimer JF, Zenk MH. Eur. J. Biochem. 1979;101:225–233. - PubMed

LinkOut - more resources