Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2010 Aug 2;5(8):e11832.
doi: 10.1371/journal.pone.0011832.

Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable

Affiliations
Meta-Analysis

Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable

Roberto Danovaro et al. PLoS One. .

Abstract

Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated (Prokaryotes excluded), most of the unknown species are within the phylum Nematoda, followed by Foraminifera, but an important fraction of macrofaunal and megafaunal species also remains unknown. Data reported here provide new insights into the patterns of biodiversity in the deep-sea Mediterranean and new clues for future investigations aimed at identifying the factors controlling and threatening deep-sea biodiversity.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Investigated areas in the Mediterranean basin.
Areas include slopes, seamounts, canyons, deep-water corals, and basin.
Figure 2
Figure 2. Longitudinal patterns of diversity in the deep Mediterranean Sea.
Diversity is estimated as (a) bacterial and archaeal OTU richness (data obtained using ARISA and 16S rDNA T-RFLP fingerprinting technique, respectively, are unpublished); (b) Species Richness and (c) Expected Species Number estimated for 100 individuals (ES(100)) for Foraminifera, Meiofauna (as Nematoda), Macrofauna and Megafauna. Megafaunal data for ES(100) are from . Reported are average values and Standard Error bars.
Figure 3
Figure 3. Bathymetric patterns of diversity in the deep Mediterranean Sea.
Diversity is reported as (a) bacterial and archaeal OTU richness (data obtained using ARISA and 16S rDNA T-RFLP fingerprinting technique, respectively, are unpublished); (b) Species Richness and (c) Expected Species Number estimated for 100 individuals (ES(100)) for Foraminifera, Meiofauna (as Nematoda), Macrofauna and Megafauna. Megafaunal data for ES(100) are from . Reported are average values and Standard Error bars. For the entire dataset of each component, the equations of the regressions are (1) Y = −0.0005 X +77.0 for the Bacteria (n = 54, R2 = 0.0001, p not significant), (2) Y = 0.0015 X +7.4 for Archaea (n = 17, R2 = 0.1692, p not significant), (3) Y = −0.0042 X +19.2 for Foraminifera (n = 172, R2 = 0.0602, p<0.05), (4) Y = −0.0099 X +53.9 for Meiofauna (n = 171, R2 = 0.1317, p<0.01), (5) Y = −0.006 X +31.4 for Macrofauna (n = 29, R2 = 0.5150, p<0.01), (6) Y = −0.0005 X +48.1 for Megafauna (n = 57, R2 = 0.3379, p<0.01).
Figure 4
Figure 4. Biodiversity in slope, canyon, deep-water corals, seamount, and basin ecosystem of the deep Mediterranean Sea.
Reported are (a) Foraminifera (data on live specimens), (b) Meiofauna (as Nematoda), (c) Macrofauna diversity as expected number of species for 100 specimens (ES(100)), and (d) Megafauna diversity as Species Richness.
Figure 5
Figure 5. Apparent contribution of different benthic components to global biodiversity in the deep Mediterranean Sea.
Reported are (a) sum of the number of species of Foraminifera (as live specimens), Meiofauna (as Nematoda), Macrofauna, and Megafauna, and (b) relative contribution of the different benthic components to the total diversity (expressed as percentage). Note that data for megafauna beneath 2,000 m depth are not available.
Figure 6
Figure 6. Rarefaction curves for the different components of the deep biota.
The equations of the rarefaction curves are reported in Table S7.
Figure 7
Figure 7. Expected number of species for each deep-fauna component within the sea bottom extension of each depth interval.
Reported are (a) total number of expected species, (b) total number of unknown expected species, and (c) the relative contribution of the unknown expected species on the total diversity for Foraminifera, Meiofauna (as Nematoda), Macrofauna, and Megafauna. The expected number of species for each component has been estimated using the equations of the rarefaction curves reported in the caption of Figure 6. Details on the estimates of area per bathymetric range and the average abundance of each component are summarized in Table S6.

Similar articles

Cited by

References

    1. Gage JD, Tyler PA. Deep sea biology: A natural history of organisms at the deep-sea floor. Cambridge: Cambridge University Press; 1991. 504
    1. Snelgrove PVR. Getting to the bottom of marine biodiversity: Sedimentary habitats. BioScience. 1999;49:129–138.
    1. Grassle JF, Maciolek NJ. Deep-sea species richness: Regional and local diversity estimates from quantitative bottom samples. Am Nat. 1992;139:313–341.
    1. Etter RJ, Grassle JF. Patterns of species diversity in the deep sea as a function of sediment particle size diversity. Nature. 1992;369:576–578.
    1. Blake JA, Grassle JF. Benthic community structure on the US South Atlantic slope off the Carolinas: Spatial heterogeneity in a current-dominated system. Deep Sea Res II. 1994;41:835–874.

Publication types