Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Sep 2;114(34):8948-60.
doi: 10.1021/jp9120904.

Microhydration of the selenite dianion: a theoretical study of structures, hydration energies, and electronic stabilities of SeO(3)(2-)(H(2)O)(n) (n = 0-6, 9) clusters

Affiliations

Microhydration of the selenite dianion: a theoretical study of structures, hydration energies, and electronic stabilities of SeO(3)(2-)(H(2)O)(n) (n = 0-6, 9) clusters

Henryk Wicke et al. J Phys Chem A. .

Abstract

In extension of the ongoing investigations of oxyanion-water clusters, we studied energetically low-lying configurations of hydrated selenite dianion (and in select cases, SeO(3)(-)) clusters using density functional theory (B3LYP, M05-2X, PBE0) and second-order Møller-Plesset perturbation theory (MP2). Water molecules doubly hydrogen bond to the selenite oxygens for n <or= 3 and increasingly form singly hydrogen bonds with selenite oxygens upon an increase of the cluster size as water-water interactions gain relative importance as compared to the selenite-water interactions. The calculated average Se-O bond length of 1.69-1.71 A and selenite tetrahedron height of 0.64-0.73 A are in accordance with recent experimental results for selenite in aqueous solution or adsorbed on calcite. Structural perturbations due to the hydration are accompanied by a considerable charge transfer (up to 0.55|e|) from the selenite substructure to the water molecules. Furthermore, the calculated electron binding energies evidence that selenite-water clusters are electronically stable only for n >or= 4 (according to M05-2X) or n >or= 5 (according to B3LYP and PBE0). The hitherto unknown hydration free energy of selenite was calculated using a cluster/continuum approach to fall into the range from -224.6 to -245.5 kcal/mol depending on the applied continuum solvation model.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources