Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov 1;49(8):1315-22.
doi: 10.1016/j.freeradbiomed.2010.07.024. Epub 2010 Aug 6.

Proapoptotic effects of long-chain vitamin E metabolites in HepG2 cells are mediated by oxidative stress

Affiliations

Proapoptotic effects of long-chain vitamin E metabolites in HepG2 cells are mediated by oxidative stress

Marc Birringer et al. Free Radic Biol Med. .

Abstract

Although the metabolism of vitamin E has been extensively studied in cell culture, animals, and humans, biochemical analyses of intermediate metabolites are scarce. We here describe the synthesis and proapoptotic properties of long-chain metabolites of α- and δ-tocopherol. Several long-chain vitamin E metabolites, namely 13'-hydroxy- and 13'-carboxychromanols, were synthesized from garcinoic acid, a δ-tocotrienol derivative extracted from the African bitter nut Garcinia kola. Both α- and δ-13'-carboxychromanol induced cell death in HepG2 cells at EC(50) of 13.5 and 6.5 μM, respectively. Apoptosis was quantified by annexin V/7-AAD staining and flow cytometry analysis. By immunoblot analyses, we observed activation of both caspase-3 and caspase-9 as well as PARP-1 cleavage. Parameters of mitochondrial dysfunction including reduced mitochondrial membrane potential and increased intracellular and intramitochondrial reactive oxygen species formation were observed after metabolite treatment. Last, long-chain hydroxychromanols were readily metabolized to the corresponding carboxychromanols in HepG2 cells. Taken together, these results indicate that long-chain metabolites may be responsible for antiproliferative properties of vitamin E vitamers.

PubMed Disclaimer

MeSH terms

LinkOut - more resources