Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Oct:23 Suppl 3:17-9.
doi: 10.3109/14767058.2010.505052.

Pharmacological neuroprotection after perinatal asphyxia

Affiliations
Review

Pharmacological neuroprotection after perinatal asphyxia

Xiyong Fan et al. J Matern Fetal Neonatal Med. 2010 Oct.

Abstract

Recent progress has provided us with several promising neuroprotective compounds to reduce perinatal hypoxic-ischemic (HI) brain injury. In the early post HI phase, therapies can be concentrated on ion channel blockage (Xenon), anti-oxidation (allopurinol, 2-iminobiotin, and indomethacin), anti-inflammation (erythropoietin [EPO], melatonin), and anti-apoptosis (nuclear factor kappa B [NF-κB]and c-jun N-terminal kinase [JNK] inhibitors); in the later phase, therapies should be targeted to promote neuronal regeneration by stimulation of neurotrophic properties of the neonatal brain (EPO, growth factors, stem cells transplantation). Combination of pharmacological interventions with moderate hypothermia, which is the only established therapy for post HI brain injury, is probably the next step to fight HI brain damage in the clinical setting. Further studies should be concentrated on more rational pharmacological strategies by determining the optimal time and dose to inhibit the various potentially destructive molecular pathways and/or to enhance endogenous repair meanwhile avoiding the adverse effects.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources