Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Sep;72(3):173-84.
doi: 10.1111/j.1365-3083.2010.02432.x.

Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation

Affiliations
Review

Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation

A Jäger et al. Scand J Immunol. 2010 Sep.

Abstract

Many autoimmune diseases are driven by self-reactive T helper cells. Until recently, organ-specific autoimmune diseases were primarily associated with Th1 cells but not Th2 cells. However, the discovery of a number of new effector T-cell subsets, like Th17 and Th9 cells, and regulatory T cells, like Tregs and Tr1 cells, has changed the way we view and understand autoimmunity at cellular and molecular levels. In recent years, IL-17-producing Th17 cells have emerged as major players in autoimmunity. The complicated relationship between Th1 and Th17 cells, as well as the intricate balance between Tregs and Th17 cells, provides a basis for understanding the immunological mechanisms that induce and regulate autoimmunity. Here, we give an overview of the interplay between different effector T-cell subsets and regulatory T-cell subsets, and how they contribute to the development of autoimmunity and tissue inflammation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematic illustrating differentiation process and plasticity of Th17 cells
Figure 2
Figure 2
Schematic illustrating the reciprocal relationship between IL-17 producing Th17 cells and Foxp3+ Tregs.

References

    1. Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–73. - PubMed
    1. Merrill JE, Kono DH, Clayton J, Ando DG, Hinton DR, Hofman FM. Inflammatory leukocytes and cytokines in the peptide-induced disease of experimental allergic encephalomyelitis in SJL and B10.PL mice. Proc Natl Acad Sci U S A. 1992 Jan 15;89:574–8. - PMC - PubMed
    1. Ando DG, Clayton J, Kono D, Urban JL, Sercarz EE. Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol. 1989 Nov;124:132–43. - PubMed
    1. Traugott U, Lebon P. Multiple sclerosis: involvement of interferons in lesion pathogenesis. Ann Neurol. 1988 Aug;24:243–51. - PubMed
    1. Kuchroo VK, Martin CA, Greer JM, Ju ST, Sobel RA, Dorf ME. Cytokines and adhesion molecules contribute to the ability of myelin proteolipid protein-specific T cell clones to mediate experimental allergic encephalomyelitis. J Immunol. 1993 Oct 15;151:4371–82. - PubMed

Publication types

MeSH terms

LinkOut - more resources