Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Dec;67(12):1442-8.
doi: 10.1001/archneurol.2010.191. Epub 2010 Aug 9.

Prospects for minocycline neuroprotection

Affiliations
Review

Prospects for minocycline neuroprotection

Jennifer M Plane et al. Arch Neurol. 2010 Dec.

Abstract

Minocycline is a clinically available antibiotic and anti-inflammatory drug that also demonstrates neuroprotective properties in a variety of experimental models of neurological diseases. There have thus far been more than 300 publications on minocycline neuroprotection, including a growing number of human studies. Our objective is to critically review the biological basis and translational potential of this action of minocycline on the nervous system.

PubMed Disclaimer

Figures

Figure
Figure
Signaling mechanisms involved in the neuroprotective actions of minocycline. See the text for detailed descriptions. AIFindicatesapoptosis-inducing factor; BCL-2, B-cell leukemia/lymphoma 2; CCR5, chemokine receptor type 5; CXCR3, chemokine (CXC motif ) receptor 3; GluR, glutamate receptor; IL, interleukin; IP-10, interferon-inducible protein 10; MAPK, mitogen-activated protein kinase; MIP-1α, macrophage inflammatory protein 1α; MMP, matrix metalloprotease; PBR, peripheral benzodiazepine receptor; TNF, tumor necrosis factor; TUNEL, terminal deoxynucleotidyl transferase dUTP (2′-deoxyuridine, 5′-triphosphate)–biotin nick-end labeling.

Similar articles

Cited by

References

    1. Stirling DP, Koochesfahani KM, Steeves JD, Tetzlaff W. Minocycline as a neuroprotective agent. Neuroscientist. 2005;11(4):308–322. - PubMed
    1. Kim HS, Suh YH. Minocycline and neurodegenerative diseases. Behav Brain Res. 2009;196(2):168–179. - PubMed
    1. Guo G, Bhat NR. p38alpha MAP kinase mediates hypoxia-induced motor neuron cell death: a potential target of minocycline’s neuroprotective action. Neurochem Res. 2007;32(12):2160–2166. - PubMed
    1. Garcia-Martinez EM, Sanz-Blasco S, Karachitos A, et al. Mitochondria and calcium flux as targets of neuroprotection caused by minocycline in cerebellar granule cells. Biochem Pharmacol. 2010;79(2):239–250. - PubMed
    1. Antonenko YN, Rokitskaya TI, Cooper AJ, Krasnikov BF. Minocycline chelates Ca2+, binds to membranes, and depolarizes mitochondria by formation of Ca2+-dependent ion channels. J Bioenerg Biomembr. 2010;42(2):151–163. - PMC - PubMed

Publication types

MeSH terms