Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar;7(1):141-52.
doi: 10.1007/s12015-010-9169-7.

Glioma stem/progenitor cells contribute to neovascularization via transdifferentiation

Affiliations

Glioma stem/progenitor cells contribute to neovascularization via transdifferentiation

Jun Dong et al. Stem Cell Rev Rep. 2011 Mar.

Abstract

Objective: Previous studies suggest that tumor cells might be the progenitor for tumor vasculature. Whether vascular tube formation from transdifferentiation of human glioma stem/progenitor cells (hGSPCs) contribute to angiogenesis of gliomas remain largely uncertain.

Methods: hGSPCs were isolated from thirteen surgical specimens of gliomas and cultured in medium favored for stem cell growth. In vitro transdifferentiation of hGSPCs was performed under hypoxia. Expression of vascular endothelial cells (VECs) markers CD31, CD34, kinase insert domain receptor (KDR), and von Willebrand factor (vWF) were analyzed with real-time quantitative RT-PCR and immunofluorescence techniques. Vasculogenic mimicry of hGSPCs was evaluated in a tumor stem cell xenograft model in vivo. Relationships between content of hGSPCs and expression levels of both VECs markers and proangiogenic factors in large number of clinical specimens were further investigated in glioma tissue microarray.

Results: In vitro, hGSPCs can transdifferentiate into VECs under hypoxia, they manifested typical "flagstone" pattern when cultivated in medium containing VEGF for a few days; when cultivated on Matrigel they were capable of forming capillary-like structures. Expression of VECs markers including CD31, CD34, KDR, and vWF were significantly up-regulated after transdifferentiation. Human leukocyte antigen (HLA) positively stained vessels were observed inside the xenograft tumors after intracerebral transplantation of hGSPCs in athymic nude mice, implied part of tumor cells with human origin were involved in formation of tumor vessels. In surgical specimens of human glioma, tumor vascular cells coexpressing the markers of early VECs (CD34) and markers of hGSPCs (ABCG2 and nestin) suggest that these vascular cells may stemmed from hGSPCs.

Conclusions: Our observations suggest the functional role of hGSPCs as endothelial progenitors, which have properties that give rise to VECs, and have the ability to form vascular endothelial tubes. However, unspecific markers (ABCG2, nestin) that stain for both endothelial as well as glioma stem cells, were found to be expressed in tumor vasculature of human specimen, and limit further interpretation of this finding.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Cell. 1990 Feb 23;60(4):585-95 - PubMed
    1. J Neurosci. 1985 Dec;5(12):3310-28 - PubMed
    1. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15665-70 - PubMed
    1. Cancer Res. 2003 Sep 15;63(18):5821-8 - PubMed
    1. Cancer Res. 2006 Sep 15;66(18):9054-64 - PubMed

Publication types

MeSH terms

LinkOut - more resources