Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Sep 1;132(34):12098-105.
doi: 10.1021/ja104902e.

Sc2(mu2-O) trapped in a fullerene cage: the isolation and structural characterization of Sc2(mu2-O)@C(s)6-C82 and the relevance of the thermal and entropic effects in fullerene isomer selection

Affiliations

Sc2(mu2-O) trapped in a fullerene cage: the isolation and structural characterization of Sc2(mu2-O)@C(s)6-C82 and the relevance of the thermal and entropic effects in fullerene isomer selection

Brandon Q Mercado et al. J Am Chem Soc. .

Abstract

The new endohedral fullerene, Sc(2)(mu(2)-O)@C(s)(6)-C(82), has been isolated from the carbon soot obtained by electric arc generation of fullerenes utilizing graphite rods doped with 90% Sc(2)O(3) and 10% Cu (w/w). Sc(2)(mu(2)-O)@C(s)(6)-C(82) has been characterized by single crystal X-ray diffraction, mass spectrometry, and UV/vis spectroscopy. Computational studies have shown that, among the nine isomers that follow the isolated pentagon rule (IPR) for C(82), cage 6 with C(s) symmetry is the most favorable to encapsulate the cluster at T > 1200 K. Sc(2)(mu(2)-O)@C(s)(6)-C(82) is the first example in which the relevance of the thermal and entropic contributions to the stability of the fullerene isomer has been clearly confirmed through the characterization of the X-ray crystal structure.

PubMed Disclaimer

LinkOut - more resources