Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010;16(25):2818-36.
doi: 10.2174/138161210793176536.

Structural determinants of the multifunctional profile of dual binding site acetylcholinesterase inhibitors as anti-Alzheimer agents

Affiliations
Review

Structural determinants of the multifunctional profile of dual binding site acetylcholinesterase inhibitors as anti-Alzheimer agents

Carles Galdeano et al. Curr Pharm Des. 2010.

Abstract

Dual binding site acetylcholinesterase inhibitors have recently emerged as a new class of anti-Alzheimer agents with potential to positively modify the course of the disease. These compounds exhibit a multifunctional pharmacological profile arising from interaction with several biological targets involved upstream and downstream in the neurodegenerative cascade of Alzheimer's disease (AD). The primary target of these compounds is the enzyme acetylcholinesterase (AChE). Interaction of dual binding site AChE inhibitors with AChE results in a potent inhibitory activity of AChE and AChE-induced β-amyloid peptide (Aβ) aggregation. Some dual binding site AChE inhibitors take on added value a significant ability to additionally inhibit the enzymes butyrylcholinesterase and BACE-1, involved in the co-regulation of the hydrolysis of the neurotransmitter acetylcholine and in Aβ formation, respectively. The structural determinants which mediate the interaction of dual binding site AChE inhibitors with these three important enzymes for AD treatment are herein reviewed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances