Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2010 Nov;26(11):1068-76.
doi: 10.1016/j.dental.2010.07.007. Epub 2010 Aug 10.

Dynamic versus static bond-strength testing of adhesive interfaces

Affiliations
Comparative Study

Dynamic versus static bond-strength testing of adhesive interfaces

André Poitevin et al. Dent Mater. 2010 Nov.

Abstract

A static bond-strength test is often regarded as clinically less relevant, since such abrupt loading of the adhesive-tooth bond clinically never occurs. Therefore, dynamic fatigue testing is often claimed to better predict the clinical effectiveness of adhesives.

Objectives: To measure the micro-tensile fatigue resistance (μTFR) of adhesives bonded to dentin, and to compare their μTFR to their micro-tensile bond strength (μTBS).

Methods: The bonding effectiveness (including fracture analysis) of three adhesives (OptiBond FL, Kerr: 3-step etch-and-rinse adhesive or 3-E&Ra; Clearfil SE, Kuraray: 2-step self-etch adhesive or 2-SEa; G-Bond, GC: 1-step self-etch adhesive or 1-SEa) was measured by means of both a dynamic μTFR and a static μTBS approach. Preparation and test set-up of the micro-specimens were identical for both tests. In fatigue, specimens were tested with a wide range of selected loads at 2Hz and at 10Hz until failure, or until 10(4) cycles were reached. At 2Hz, the μTFR was also measured after 3-month water storage. The μTFR was determined using a logistic regression model. Two-way ANOVA and Tukey HSD multiple comparisons test were used to determine statistical differences in μTBS.

Results: The 1-SEa recorded significantly lower values in μTFR at 10Hz and in μTBS than the 2-SEa and 3-E&Ra. The 1-SEa and the 2-SEa performed significantly lower in μTFR than the 3-E&Ra, when tested at 2Hz after 3-month water storage. Fatigue testing at 2Hz after 1-week water storage did not reveal any differences in μTFR between the three adhesives.

Significance: The 3-E&Ra performed best in terms of bonding effectiveness, irrespective of the experimental condition or test used. The μTBS test proved once more to be a reliable laboratory test in ranking contemporary adhesives on their bonding effectiveness.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources