Usage of case-based reasoning, neural network and adaptive neuro-fuzzy inference system classification techniques in breast cancer dataset classification diagnosis
- PMID: 20703710
- DOI: 10.1007/s10916-010-9485-0
Usage of case-based reasoning, neural network and adaptive neuro-fuzzy inference system classification techniques in breast cancer dataset classification diagnosis
Abstract
Breast cancer is a common to females worldwide. Today, technological advancements in cancer treatment innovations have increased the survival rates. Many theoretical and experimental studies have shown that a multiple classifier system is an effective technique for reducing prediction errors. This study compared the particle swarm optimizer (PSO) based artificial neural network (ANN), the adaptive neuro-fuzzy inference system (ANFIS), and a case-based reasoning (CBR) classifier with a logistic regression model and decision tree model. It also applied three classification techniques to the Mammographic Mass Data Set, and measured its improvements in accuracy and classification errors. The experimental results showed that, the best CBR-based classification accuracy is 83.60%, and the classification accuracies of the PSO-based ANN classifier and ANFIS are 91.10% and 92.80%, respectively.
Similar articles
-
Adaptive neuro-fuzzy inference systems for automatic detection of breast cancer.J Med Syst. 2009 Oct;33(5):353-8. doi: 10.1007/s10916-008-9197-x. J Med Syst. 2009. PMID: 19827261
-
Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel.Environ Monit Assess. 2020 Jun 17;192(7):439. doi: 10.1007/s10661-020-08268-4. Environ Monit Assess. 2020. PMID: 32556670
-
Automatic detection of erthemato-squamous diseases using adaptive neuro- fuzzy inference systems.Comput Biol Med. 2005 Jun;35(5):421-433. doi: 10.1016/j.compbiomed.2004.03.003. Comput Biol Med. 2005. PMID: 16136651
-
Solar radiation and solar energy estimation using ANN and Fuzzy logic concept: A comprehensive and systematic study.Environ Sci Pollut Res Int. 2022 May;29(22):32428-32442. doi: 10.1007/s11356-022-19185-z. Epub 2022 Feb 17. Environ Sci Pollut Res Int. 2022. PMID: 35178628 Review.
-
Reviewing ensemble classification methods in breast cancer.Comput Methods Programs Biomed. 2019 Aug;177:89-112. doi: 10.1016/j.cmpb.2019.05.019. Epub 2019 May 20. Comput Methods Programs Biomed. 2019. PMID: 31319964 Review.
Cited by
-
Automating case definitions using literature-based reasoning.Appl Clin Inform. 2013 Oct 30;4(4):515-27. doi: 10.4338/ACI-2013-04-RA-0028. eCollection 2013. Appl Clin Inform. 2013. PMID: 24454579 Free PMC article.
-
Clinical pathways scheduling using hybrid genetic algorithm.J Med Syst. 2013 Jun;37(3):9945. doi: 10.1007/s10916-013-9945-4. Epub 2013 Apr 11. J Med Syst. 2013. PMID: 23576080
-
Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System.J Med Signals Sens. 2012 Jan;2(1):49-60. J Med Signals Sens. 2012. PMID: 23493054 Free PMC article.
-
Comparison of statistical, LBP, and multi-resolution analysis features for breast mass classification.J Med Syst. 2014 Sep;38(9):100. doi: 10.1007/s10916-014-0100-7. Epub 2014 Jul 19. J Med Syst. 2014. PMID: 25037713
-
Developing and using expert systems and neural networks in medicine: a review on benefits and challenges.J Med Syst. 2014 Sep;38(9):110. doi: 10.1007/s10916-014-0110-5. Epub 2014 Jul 16. J Med Syst. 2014. PMID: 25027017 Review.
References
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous