Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Aug 13;39(3):468-76.
doi: 10.1016/j.molcel.2010.07.013.

S-nitrosylation of beta-catenin by eNOS-derived NO promotes VEGF-induced endothelial cell permeability

Affiliations
Free article

S-nitrosylation of beta-catenin by eNOS-derived NO promotes VEGF-induced endothelial cell permeability

Sébastien Thibeault et al. Mol Cell. .
Free article

Abstract

Disruption of adherens junctions between endothelial cells results in compromised endothelial barrier function and in altered angiogenesis. Nitric oxide (NO) produced by endothelial NO synthase (eNOS) is essential for increased vascular permeability induced by vascular endothelial growth factor (VEGF). However, the molecular mechanisms by which NO modulates endothelial permeability remain elusive. Here, we show that, within adherens junctions, beta-catenin is a substrate for S-nitrosylation by NO. Stimulation of endothelial cells with VEGF induces S-nitrosylation of beta-catenin, which is dependent on expression and activity of eNOS. Furthermore, VEGF-induced S-nitrosylation of beta-catenin is inhibited in eNOS(-/-) mice. We identify Cys619, located within the VE-cadherin interaction site, as the major S-nitrosylation locus in response to VEGF. Inhibition of S-nitrosylation at Cys619 prevents NO-dependent dissociation of beta-catenin from VE-cadherin and disassembly of adherens junction complexes and inhibits VEGF-stimulated endothelial permeability. Thus, we identify S-nitrosylation of beta-catenin as a modulator of intercellular contacts between endothelial cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources