Physiology and pathophysiology of colonic motor activity (2)
- PMID: 2070711
- DOI: 10.1007/BF01297155
Physiology and pathophysiology of colonic motor activity (2)
Abstract
The basic motor function of the colon is to mix and knead its contents, propel them slowly in the caudad direction, hold them in the distal colon until defecation, and provide a strong propulsive force during defecation. Infrequently, it also produces mass movements in the proximal colon. These motor functions are achieved in most species by three different types of contractions: the individual phasic contractions that include the short- and long-duration contractions, organized groups of contractions that include the migrating and nonmigrating motor complexes, and special propulsive contractions (giant migrating contractions). The spatial and temporal patterns of all of these contractions are controlled by myogenic, neural, and chemical control mechanisms. The individual phasic contractions are highly disorganized in time and space in the colon. For this reason, they are effective in mixing and kneading and slow distal propulsion. The underlying cause of the disorganization of short duration contractions is the irregularity in the frequency and waveshape of colonic electrical control activity and its phase unlocking throughout the colon. The individual contractions in many species occur in cyclic bursts called contractile states. At least in some species, these contractile states exhibit mostly caudad and sometimes orad migration. However, there are also nonmigrating or randomly migrating contractile states in the colon. These two patterns of contractile states are called colonic migrating motor complexes and colonic nonmigrating motor complexes, respectively. The giant migrating contractions provide the strong propulsive force for defecation and mass movements. The neural control of colonic contractions is organized at three levels--enteric, autonomic, and central. The enteric nervous system contains cholinergic and peptidergic neurons and plays a major role in the control of colonic contractions. The autonomic nerves, the vagi, pelvic, lumbar colonic, hypogastric, and splanchnic nerves, seem to continuously monitor the state of the colon and provide a modulatory input when necessary. These nerves play a major role in the reflexive control of colonic motor function. The voluntary input from the central nervous system coordinates the motor activity of the colon, rectum, anal canal and sphincters for orderly evacuation of feces during defecation. The role of acetylcholine, nonadrenaline, and the yet to be completely identified nonadrenergic, noncholinergic neurotransmitter, possibly VIP, in the control of contractions is fairly well established. Besides these, there are several other peptides and chemicals that are localized in the colonic wall; their physiological roles remain unknown. Colonic motor activity has been studied in several disease states. The findings have not always been consistent.(ABSTRACT TRUNCATED AT 400 WORDS)
Similar articles
-
Colonic motor activity.Surg Clin North Am. 1993 Dec;73(6):1201-23. doi: 10.1016/s0039-6109(16)46188-8. Surg Clin North Am. 1993. PMID: 8248835 Review.
-
Small intestinal physiology and pathophysiology.Gastroenterol Clin North Am. 1989 Jun;18(2):375-404. Gastroenterol Clin North Am. 1989. PMID: 2668175 Review.
-
Contractile mechanisms of canine colonic propulsion.Am J Physiol. 1995 Mar;268(3 Pt 1):G530-8. doi: 10.1152/ajpgi.1995.268.3.G530. Am J Physiol. 1995. PMID: 7900814
-
Colonic motility in humans--a growing understanding.Baillieres Clin Gastroenterol. 1991 Jun;5(2):453-78. doi: 10.1016/0950-3528(91)90037-2. Baillieres Clin Gastroenterol. 1991. PMID: 1912659 Review.
-
Roles of three distinct neurogenic motor patterns during pellet propulsion in guinea-pig distal colon.J Physiol. 2019 Oct;597(20):5125-5140. doi: 10.1113/JP278284. Epub 2019 Oct 1. J Physiol. 2019. PMID: 31444880
Cited by
-
Colonic Electromechanical Abnormalities Underlying Post-operative Ileus: A Systematic and Critical Review.J Neurogastroenterol Motil. 2019 Jan 31;25(1):36-47. doi: 10.5056/jnm18030. J Neurogastroenterol Motil. 2019. PMID: 30504526 Free PMC article. Review.
-
Nitric oxide synthase and VIP distribution in enteric nervous system in idiopathic chronic constipation.Dig Dis Sci. 1995 Nov;40(11):2450-5. doi: 10.1007/BF02063253. Dig Dis Sci. 1995. PMID: 7587830
-
Impaired colonic motor response to cholinergic stimulation in patients with severe chronic idiopathic (slow transit type) constipation.Dig Dis Sci. 1993 Jun;38(6):1040-5. doi: 10.1007/BF01295719. Dig Dis Sci. 1993. PMID: 8508698 Clinical Trial.
-
Functional findings in irritable bowel syndrome.World J Gastroenterol. 2006 May 14;12(18):2830-8. doi: 10.3748/wjg.v12.i18.2830. World J Gastroenterol. 2006. PMID: 16718806 Free PMC article. Review.
-
Effect of celiac and superior mesenteric ganglionectomy on fasted canine colonic motor activity.Surg Today. 1995;25(8):717-21. doi: 10.1007/BF00311488. Surg Today. 1995. PMID: 8520166
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Medical