Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec;56(12):1871-6.
doi: 10.1016/j.jinsphys.2010.08.006. Epub 2010 Aug 19.

Antioxidant responses of citrus red mite, Panonychus citri (McGregor) (Acari: Tetranychidae), exposed to thermal stress

Affiliations

Antioxidant responses of citrus red mite, Panonychus citri (McGregor) (Acari: Tetranychidae), exposed to thermal stress

Li-Hong Yang et al. J Insect Physiol. 2010 Dec.

Abstract

Relatively low or high temperatures are responsible for a variety of physiological stress responses in insects and mites. Induced thermal stress was recently associated with increased reactive oxygen species (ROS) generation, which caused oxidative damage. In this study, we examined the time-related effect of the relatively low (0, 5, 10, and 15 °C) or high (32, 35, 38, and 41 °C) temperatures on the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidases (POX), and glutathione-S-transferase (GST), and the total antioxidant capacity (TEAC) of the citrus red mite, Panonychus citri (McGregor). The malondialdehyde (MDA) concentration, as a marker of lipid peroxidation in organisms, was also measured in the citrus red mite under thermal stress conditions. Results showed that SOD and GST activities were significantly increased and play an important role in the process of antioxidant response to thermal stress. Lipid peroxidation levels increased significantly (P<0.001) and changed in a time-dependent manner. CAT and POX activity, as well as TEAC, did not vary significantly and play a minor role to remove the ROS generation. These results suggest that thermal stress leads to oxidative stress and antioxidant enzymes play an important role in reducing oxidative damage in the citrus red mite.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources