Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov 12;485(1):1-5.
doi: 10.1016/j.neulet.2010.08.014. Epub 2010 Aug 13.

The influences of sphingolipid metabolites on gentamicin-induced hair cell loss of the rat cochlea

Affiliations

The influences of sphingolipid metabolites on gentamicin-induced hair cell loss of the rat cochlea

Bungo Nishimura et al. Neurosci Lett. .

Abstract

Sphingolipid metabolites inducing ceramide, sphingosine, and sphingosine-1-phosphate (S1P) play important roles in the regulation of cell proliferation, survival, and death. Aminoglycoside antibiotics including gentamicin induce inner ear hair cell loss and sensorineural hearing loss. Apoptotic cell death is considered to play a key role in this injury. The present study was designed to investigate the possible involvement of ceramide and S1P in hair cell death due to gentamicin. In addition, the effects of other metabolites of ceramide, gangliosides GM1 (GM1) and GM3 (GM3), on gentamicin ototoxicity were also investigated. Basal turn organ of Corti explants from p3 to p5 rats were maintained in tissue culture and exposed to 20 or 35μM gentamicin for 48h. The effects of ceramide, S1P, GM1, and GM3 on gentamicin-induced hair cell loss were examined. Gentamicin-induced hair cell loss was increased by ceramide but was decreased by S1P. GM1 and GM3 exhibited protective effects against gentamicin-induced hair cell death at the limited concentrations. These results indicate that ceramide enhances gentamicin ototoxicity by promoting apoptotic hair cell death, and that S1P, GM1, and GM3 act as cochlear protectants. In conclusion, sphingolipid metabolites influence the apoptotic reaction of hair cells to gentamicin ototoxicity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources