Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Nov;1804(11):2089-101.
doi: 10.1016/j.bbapap.2010.08.001. Epub 2010 Aug 12.

Proteomics of skeletal muscle glycolysis

Affiliations
Review

Proteomics of skeletal muscle glycolysis

Kay Ohlendieck. Biochim Biophys Acta. 2010 Nov.

Abstract

Glycolysis represents one of the best-understood and most ancient metabolic pathways. In skeletal muscle fibres, energy for contraction is supplied by adenosine triphosphate via anaerobic glycolysis, the phosphocreatine shuttle and oxidative phosphorylation. In this respect, the anaerobic glycolytic pathway supports short duration performances of contractile tissues of high intensity. The catalytic elements associated with glycolysis are altered during development, muscle differentiation, physiological adaptations and many pathological mechanisms, such as muscular dystrophy, diabetes mellitus and age-related muscle weakness. Although gel electrophoresis-based proteomics is afflicted with various biological and technical problems, it is an ideal analytical tool for studying the abundant and mostly soluble enzymes that constitute the glycolytic system. This review critically examines the proteomic findings of recent large-scale studies of glycolytic enzymes and associated components in normal, transforming and degenerating muscle tissues. In the long term, proteins belonging to the glycolytic pathway may be useful as biomarkers of muscle adaptations and pathophysiological mechanisms and can be employed to improve diagnostics and in the identification of novel therapeutic targets in neuromuscular disorders.

PubMed Disclaimer

Publication types

LinkOut - more resources