Active site metal ion in UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) switches between Fe(II) and Zn(II) depending on cellular conditions
- PMID: 20709752
- PMCID: PMC2962478
- DOI: 10.1074/jbc.M110.147173
Active site metal ion in UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) switches between Fe(II) and Zn(II) depending on cellular conditions
Abstract
UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) catalyzes the deacetylation of UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine to form UDP-3-O-myristoylglucosamine and acetate in Gram-negative bacteria. This second, and committed, step in lipid A biosynthesis is a target for antibiotic development. LpxC was previously identified as a mononuclear Zn(II) metalloenzyme; however, LpxC is 6-8-fold more active with the oxygen-sensitive Fe(II) cofactor (Hernick, M., Gattis, S. G., Penner-Hahn, J. E., and Fierke, C. A. (2010) Biochemistry 49, 2246-2255). To analyze the native metal cofactor bound to LpxC, we developed a pulldown method to rapidly purify tagged LpxC under anaerobic conditions. The metal bound to LpxC purified from Escherichia coli grown in minimal medium is mainly Fe(II). However, the ratio of iron/zinc bound to LpxC varies with the metal content of the medium. Furthermore, the iron/zinc ratio bound to native LpxC, determined by activity assays, has a similar dependence on the growth conditions. LpxC has significantly higher affinity for Zn(II) compared with Fe(II) with K(D) values of 60 ± 20 pM and 110 ± 40 nM, respectively. However, in vivo concentrations of readily exchangeable iron are significantly higher than zinc, suggesting that Fe(II) is the thermodynamically favored metal cofactor for LpxC under cellular conditions. These data indicate that LpxC expressed in E. coli grown in standard medium predominantly exists as the Fe(II)-enzyme. However, the metal cofactor in LpxC can switch between iron and zinc in response to perturbations in available metal ions. This alteration may be important for regulating the LpxC activity upon changes in environmental conditions and may be a general mechanism of regulating the activity of metalloenzymes.
Figures




Similar articles
-
Activation of Escherichia coli UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase by Fe2+ yields a more efficient enzyme with altered ligand affinity.Biochemistry. 2010 Mar 16;49(10):2246-55. doi: 10.1021/bi902066t. Biochemistry. 2010. PMID: 20136146 Free PMC article.
-
UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase of Escherichia coli is a zinc metalloenzyme.Biochemistry. 1999 Feb 9;38(6):1902-11. doi: 10.1021/bi982339s. Biochemistry. 1999. PMID: 10026271
-
Molecular recognition by Escherichia coli UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase is modulated by bound metal ions.Biochemistry. 2006 Dec 12;45(49):14573-81. doi: 10.1021/bi061625y. Biochemistry. 2006. PMID: 17144651
-
UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) inhibitors: a new class of antibacterial agents.Curr Med Chem. 2012;19(13):2038-50. doi: 10.2174/092986712800167374. Curr Med Chem. 2012. PMID: 22414079 Review.
-
Mechanism and inhibition of LpxC: an essential zinc-dependent deacetylase of bacterial lipid A synthesis.Curr Pharm Biotechnol. 2008 Feb;9(1):9-15. doi: 10.2174/138920108783497668. Curr Pharm Biotechnol. 2008. PMID: 18289052 Free PMC article. Review.
Cited by
-
Fast Screening of Inhibitor Binding/Unbinding Using Novel Software Tool CaverDock.Front Chem. 2019 Oct 29;7:709. doi: 10.3389/fchem.2019.00709. eCollection 2019. Front Chem. 2019. PMID: 31737596 Free PMC article.
-
Control of lipopolysaccharide biosynthesis by FtsH-mediated proteolysis of LpxC is conserved in enterobacteria but not in all gram-negative bacteria.J Bacteriol. 2011 Mar;193(5):1090-7. doi: 10.1128/JB.01043-10. Epub 2010 Dec 30. J Bacteriol. 2011. PMID: 21193611 Free PMC article.
-
Active Site Metal Identity Alters Histone Deacetylase 8 Substrate Selectivity: A Potential Novel Regulatory Mechanism.Biochemistry. 2017 Oct 24;56(42):5663-5670. doi: 10.1021/acs.biochem.7b00851. Epub 2017 Oct 12. Biochemistry. 2017. PMID: 28937750 Free PMC article.
-
Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation.Adv Microb Physiol. 2012;60:91-210. doi: 10.1016/B978-0-12-398264-3.00002-4. Adv Microb Physiol. 2012. PMID: 22633059 Free PMC article. Review.
-
The structure- and metal-dependent activity of Escherichia coli PgaB provides insight into the partial de-N-acetylation of poly-β-1,6-N-acetyl-D-glucosamine.J Biol Chem. 2012 Sep 7;287(37):31126-37. doi: 10.1074/jbc.M112.390005. Epub 2012 Jul 18. J Biol Chem. 2012. PMID: 22810235 Free PMC article.
References
-
- Jackman J. E., Fierke C. A., Tumey L. N., Pirrung M., Uchiyama T., Tahir S. H., Hindsgaul O., Raetz C. R. (2000) J. Biol. Chem. 275, 11002–11009 - PubMed
-
- Wyckoff T. J., Raetz C. R., Jackman J. E. (1998) Trends Microbiol. 6, 154–159 - PubMed
-
- Reeves P. R., Hobbs M., Valvano M. A., Skurnik M., Whitfield C., Coplin D., Kido N., Klena J., Maskell D., Raetz C. R., Rick P. D. (1996) Trends Microbiol. 4, 495–503 - PubMed
-
- Opal S. M. (2007) Int. J. Med. Microbiol. 297, 365–377 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases