Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Sep;213(Pt 17):2933-9.
doi: 10.1242/jeb.043430.

Switching attraction to inhibition: mating-induced reversed role of sex pheromone in an insect

Affiliations

Switching attraction to inhibition: mating-induced reversed role of sex pheromone in an insect

Romina B Barrozo et al. J Exp Biol. 2010 Sep.

Abstract

In the moth, Agrotis ipsilon, newly mated males cease to be attracted to the female-produced sex pheromone, preventing them from re-mating until the next night, by which time they would have refilled their reproductive glands for a potential new ejaculate. The behavioural plasticity is accompanied by a decrease in neuron sensitivity within the primary olfactory centre, the antennal lobe (AL). However, it was not clear whether the lack of the sexually guided behaviour results from the absence of sex pheromone detection in the ALs, or if they ignore it in spite of detection, or if the sex pheromone itself inhibits attraction behaviour after mating. To test these hypotheses, we performed behavioural tests and intracellular recordings of AL neurons to non-pheromonal odours (flower volatiles), different doses of sex pheromone and their mixtures in virgin and newly mated males. Our results show that, although the behavioural and AL neuron responses to flower volatiles alone were similar between virgin and mated males, the behavioural response of mated males to flower odours was inhibited by adding pheromone doses above the detection threshold of central neurons. Moreover, we show that the sex pheromone becomes inhibitory by differential central processing: below a specific threshold, it is not detected within the AL; above this threshold, it becomes inhibitory, preventing newly mated males from responding even to plant odours. Mated male moths have thus evolved a strategy based on transient odour-selective central processing, which allows them to avoid the risk-taking, energy-consuming search for females and delay re-mating until the next night for a potential new ejaculate.

PubMed Disclaimer

Publication types

LinkOut - more resources