Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1991 Jun;128(2):453-69.
doi: 10.1093/genetics/128.2.453.

On the evolution of genetic incompatibility systems. VI. A three-locus modifier model for the origin of gametophytic self-incompatibility

Affiliations
Review

On the evolution of genetic incompatibility systems. VI. A three-locus modifier model for the origin of gametophytic self-incompatibility

M K Uyenoyama. Genetics. 1991 Jun.

Abstract

Recent genetic analyses have demonstrated that self-incompatibility in flowering plants derives from the coordinated expression of a system of loci. To address the selective mechanisms through which a genetic system of this kind evolves, I present a three-locus model for the origin of gametophytic self-incompatibility. Conventional models assume that a single locus encodes all physiological effects associated with self-incompatibility and that the viability of offspring depends only on whether they were derived by selfing or outcrossing. My model explicitly represents the genetic determination of offspring viability by a locus subject to symmetrically overdominant selection. Initially, the level of expression of the proto-S locus is insufficient to induce self-incompatibility. Weak gametophytic self-incompatibility arises upon the introduction of a rare allele at an unlinked modifier locus which enhances the expression of the proto-S locus. While conventional models predict that the origin of self-incompatibility requires at least two- to threefold levels of inbreeding depression, I find that the comparatively low levels of inbreeding depression generated by a single overdominant locus can ensure the invasion of an enhancer of self-incompatibility under sufficiently high rates of receipt of self-pollen. Associations among components of the incompatibility system promote the origin of self-incompatibility. Enhancement of heterozygosity at the initially neutral proto-S locus improves offspring viability through associative overdominance. Further, the modifier that enhances the expression of self-incompatibility develops a direct association with heterozygosity at the overdominant viability locus. These results suggest that the evolutionary processes by which incompatibility systems originate may differ significantly from those associated with their breakdown. The genetic mechanism explored here may apply to the evolution of other systems that restrict reproduction, including maternal-fetal incompatibility in mammals.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4340-4 - PubMed
    1. Genetics. 1989 Jan;121(1):153-61 - PubMed
    1. Nature. 1989 Dec 21-28;342(6252):955-7 - PubMed
    1. Genetics. 1989 Jan;121(1):139-51 - PubMed
    1. Plant Physiol. 1989 Jan;89(1):360-7 - PubMed

Publication types