Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Aug 10;7(8):e1000324.
doi: 10.1371/journal.pmed.1000324.

Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies

Affiliations

Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies

Jamie T Griffin et al. PLoS Med. .

Abstract

Background: Over the past decade malaria intervention coverage has been scaled up across Africa. However, it remains unclear what overall reduction in transmission is achievable using currently available tools.

Methods and findings: We developed an individual-based simulation model for Plasmodium falciparum transmission in an African context incorporating the three major vector species (Anopheles gambiae s.s., An. arabiensis, and An. funestus) with parameters obtained by fitting to parasite prevalence data from 34 transmission settings across Africa. We incorporated the effect of the switch to artemisinin-combination therapy (ACT) and increasing coverage of long-lasting insecticide treated nets (LLINs) from the year 2000 onwards. We then explored the impact on transmission of continued roll-out of LLINs, additional rounds of indoor residual spraying (IRS), mass screening and treatment (MSAT), and a future RTS,S/AS01 vaccine in six representative settings with varying transmission intensity (as summarized by the annual entomological inoculation rate, EIR: 1 setting with low, 3 with moderate, and 2 with high EIRs), vector-species combinations, and patterns of seasonality. In all settings we considered a realistic target of 80% coverage of interventions. In the low-transmission setting (EIR approximately 3 ibppy [infectious bites per person per year]), LLINs have the potential to reduce malaria transmission to low levels (<1% parasite prevalence in all age-groups) provided usage levels are high and sustained. In two of the moderate-transmission settings (EIR approximately 43 and 81 ibppy), additional rounds of IRS with DDT coupled with MSAT could drive parasite prevalence below a 1% threshold. However, in the third (EIR = 46) with An. arabiensis prevailing, these interventions are insufficient to reach this threshold. In both high-transmission settings (EIR approximately 586 and 675 ibppy), either unrealistically high coverage levels (>90%) or novel tools and/or substantial social improvements will be required, although considerable reductions in prevalence can be achieved with existing tools and realistic coverage levels.

Conclusions: Interventions using current tools can result in major reductions in P. falciparum malaria transmission and the associated disease burden in Africa. Reduction to the 1% parasite prevalence threshold is possible in low- to moderate-transmission settings when vectors are primarily endophilic (indoor-resting), provided a comprehensive and sustained intervention program is achieved through roll-out of interventions. In high-transmission settings and those in which vectors are mainly exophilic (outdoor-resting), additional new tools that target exophagic (outdoor-biting), exophilic, and partly zoophagic mosquitoes will be required.

PubMed Disclaimer

Conflict of interest statement

ACG has received payment for advice on malaria transmission modeling from Glaxo SmithKline.

Figures

Figure 1
Figure 1. Transmission model; EIR, prevalence and seasonality; and infectious reservoir.
(A) Flow diagram for the human component of the model. S, susceptible; T, treated clinical disease; D, untreated clinical disease; P, prophylaxis; A, asymptomatic patent infection; U, asymptomatic sub-patent infection. (B) The relationship between EIR and parasite prevalence in children under 15 y. Solid line: fitted relationship; filled circles: data representative of this age group; open circles: data from other age groups (mostly younger) used in the model fitting. (C) The relationship between transmission intensity characterized by EIR and seasonality, defined as the proportion of EIR over a single calendar year that occurs within the peak three months of transmission. The colours of the markers indicate the different transmission settings and the shapes the species. (D) The estimated age-specific infectious reservoir for the different transmission settings defined in (C), with the same colours as (C). This is defined as the product of the age-specific biting rate, age-specific prevalence states (T, D, A, and U), state-specific onward infectivity to mosquitoes and the size of the population at this age.
Figure 2
Figure 2. Fitted seasonal profile of EIR for the six transmission settings by vector species.
The fitted seasonal profiles of EIR per day and fitted annual EIR were obtained by fitting a transformed sinusoidal function to reported time series of either EIR or mosquito densities in the settings (see Protocol S4). Grey, total; red, An. gambiae s.s.; blue, An. funestus; green, An. arabiensis. (A) Nkoteng, Cameroon; (B) Kinkole, DRC; (C) Kassena-Nankana District, Ghana; (D) Matola, Maputo, Mozambique; (E) Matimbwa, Tanzania; (F) Kjenjojo Kasiina, Uganda.
Figure 3
Figure 3. Impact on parasite prevalence of LLINs alone.
(A) Example of the ways in which coverage of LLINs is considered to increase in various model scenarios. Baseline (blue): our baseline scenario in which 80% coverage is achieved over five years but adherence also decays between net distribution rounds; rapid (brown): as baseline but with more rapid scale-up to 80% coverage; rapid, no drop-out (green): rapid scale-up to 80% coverage with no decay in adherence; 100% (yellow): 100% coverage with no decay in adherence (theoretical maximum effect). (B) Model-predicted impact on parasite prevalence over calendar time of four scenarios for LLIN scale-up combined with an earlier switch to ACT as first-line therapy in Kjenjojo Kasiina, Uganda. (C) Final parasite prevalence and (D) absolute reduction in parasite prevalence after 15 years of a sustained intervention program in the six transmission settings with the baseline scenario for LLIN distribution, the rapid scenario for LLIN distribution, and the rapid scenario with no loss of adherence for LLIN distribution.
Figure 4
Figure 4. Impact of combining LLINs with IRS and MSAT.
(A–F) Impact of intervention scenarios incorporating IRS and MSAT on parasite prevalence in the six transmission settings. All scenarios include the earlier switch to ACT as first-line therapy. “LLIN only” uses the baseline scale-up for coverage. All other scenarios include LLIN scale-up using the baseline scenario except where noted. (G and H) Final parasite prevalence and absolute reduction in prevalence after 15 years of a sustained intervention program in the six transmission settings with baseline scenario for LLIN distribution; baseline LLIN + yearly MSAT; baseline LLIN + yearly IRS; baseline LLIN + yearly MSAT + yearly IRS.
Figure 5
Figure 5. The effect of non-random distribution of interventions.
(A and B) Parasite prevalence after 15 years of an intervention program as a function of the target coverage of (A) LLIN distribution and (B) MSAT for Kinkole, DRC. Blue: if the intervention is distributed randomly; green: if the intervention is preferentially distributed to the youngest children; red: if the intervention is preferentially distributed to those who are bitten most frequently (excluding age dependency in biting rates). (C and D) Parasite prevalence after 15 years of a single intervention program as a function of the frequency of the intervention and whether successive rounds are given randomly (green) or to the same people (purple) for Kinkole, DRC. (C) IRS; (D) MSAT. (E and F) Parasite prevalence in all individuals (red), in 2- to 10-year-olds (blue) and EIR (green) after 15 years of a combined intervention program as a function of the correlation in receipt of the two interventions for KND, Ghana. A correlation of 0 represents random distribution at each round, 1 represents those receiving one intervention also receive the other and −1 represents those receiving one intervention do not receive the other. (E) IRS and LLIN; (F) IRS and MSAT. For (E) and (F) there is 50% coverage per round for IRS and MSAT and the baseline scenario for LLINs.
Figure 6
Figure 6. Impact of additional vaccination on parasite prevalence in the different transmission settings.
All runs assume the RTS,S vaccine is 50% efficacious and has a half-life of 3 years. PEV at EPI denotes the pre-erythrocytic vaccine being given through the Expanded Program on Immunization, whilst mass PEV denotes a mass vaccination campaign. All runs include LLINs. (A) PEV at EPI with or without additional MSAT in Kjenjojo, Uganda (B) Mass PEV with or without additional MSAT in Kjenjojo, Uganda (C to F) MSAT and IRS with mass PEV in: (C) Kinkole, DRC, (D) Maputo, Mozambique, (E) Nkoteng, Cameroon and (F) KND, Ghana.

Similar articles

Cited by

References

    1. Barnes KI, Chanda P, Ab Barnabas G. Impact of the large-scale deployment of artemether/lumefantrine on the malaria disease burden in Africa: case studies of South Africa, Zambia and Ethiopia. Malar J. 2009;8(Suppl 1):S8. - PMC - PubMed
    1. Ceesay SJ, Casals-Pascual C, Erskine J, Anya SE, Duah NO, et al. Changes in malaria indices between 1999 and 2007 in The Gambia: a retrospective analysis. Lancet. 2008;372:1545–1554. - PMC - PubMed
    1. O'Meara WP, Bejon P, Mwangi TW, Okiro EA, Peshu N, et al. Effect of a fall in malaria transmission on morbidity and mortality in Kilifi, Kenya. Lancet. 2008;372:1555–1562. - PMC - PubMed
    1. Sharp BL, Kleinschmidt I, Streat E, Maharaj R, Barnes KI, et al. Seven years of regional malaria control collaboration–Mozambique, South Africa, and Swaziland. Am J Trop Med Hyg. 2007;76:42–47. - PMC - PubMed
    1. World Health Organisation. 2009. World Malaria Report 2009.

Publication types

MeSH terms