Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Aug;26(6):729-37.
doi: 10.1080/08927014.2010.511196.

Structural changes induced by a lytic bacteriophage make ciprofloxacin effective against older biofilm of Klebsiella pneumoniae

Affiliations

Structural changes induced by a lytic bacteriophage make ciprofloxacin effective against older biofilm of Klebsiella pneumoniae

Vivek Verma et al. Biofouling. 2010 Aug.

Abstract

Bacteria have evolved multiple mechanisms, such as biofilm formation, to thwart antibiotic action. Yet antibiotics remain the drug of choice against clinical infections. It has been documented that young biofilm of Klebsiella pneumoniae could be eradicated significantly by ciprofloxacin treatment alone. Since age of biofilm is a decisive factor in determining the outcome of antibiotic treatment, in the present study biofilm of K. pneumoniae, grown for extended periods was treated with ciprofloxacin and/or depolymerase producing lytic bacteriophage (KPO1K2). The reduction in bacterial numbers of older biofilm was greater after application of the two agents in combination as ciprofloxacin alone could not reduce bacterial biomass significantly in older biofilms (P > 0.05). Confocal microscopy suggested the induction of structural changes in the biofilm matrix and a decrease in micro-colony size after KPO1K2 treatment. The role of phage associated depolymerase was emphasized by the insignificant eradication of biofilm by a non-depolymerase producing bacteriophage that, however, eradicated the biofilm when applied concomitantly with purified depolymerase. These findings demonstrate that a lytic bacteriophage alone can eradicate older biofilms significantly and its action is primarily depolymerase mediated. However, application of phage and antibiotic in combination resulted in slightly increased biofilm eradication confirming the speculation that antibiotic efficacy can be augmented by bacteriophage.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources