Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb;55(2):278-90.
doi: 10.1002/mnfr.201000224. Epub 2010 Aug 18.

Chemoprevention of colonic tumorigenesis by dietary hydroxylated polymethoxyflavones in azoxymethane-treated mice

Affiliations

Chemoprevention of colonic tumorigenesis by dietary hydroxylated polymethoxyflavones in azoxymethane-treated mice

Ching-Shu Lai et al. Mol Nutr Food Res. 2011 Feb.

Abstract

Scope: Hydroxylated polymethoxyflavones (PMFs), existing exclusively in citrus genus, have been reported to exhibit a broad spectrum of biological activity. Here we investigated the chemopreventive effects and underlying molecular mechanisms of dietary administration of hydroxylated PMFs in an azoxymethane (AOM)-induced colonic tumorigenesis model.

Methods and results: Male, Institute of Cancer Research (ICR), mice at age of 6 wk were injected with AOM twice weekly at a dose of 5 mg/kg for 2 wk and continuously fed control diet or diets containing 0.01 and 0.05% hydroxylated PMFs, respectively. Mice were then sacrificed at 6 and 20 wk, and colonic tissues were collected and examined. Hydroxylated PMFs feeding dose-dependently decreased the number of aberrant crypt foci in colonic tissues of mice. More importantly, we found that hydroxylated PMFs caused a strong reduction in numbers of large aberrant crypt foci and tumors in colonic tissue. Molecular analysis exhibited the anti-proliferative, anti-inflammatory, anti-angiogenic and pro-apoptotic activities of hydroxylated PMFs by significantly decreasing the levels of inducible nitric oxide synthase, cyclooxygenase, cyclin D1 and vascular endothelial growth factor through interfering with Wnt/β-catenin and epidermal growth factor receptor/Ras/mitogen-activated protein kinase signaling pathways as well as the activation of transcription factors NF-κB and STAT3 in colonic tissue, thus resulting in suppression of colonic tumorigenesis.

Conclusion: Taken together, these results demonstrated for the first time the in vivo chemopreventive efficacy and molecular mechanisms of dietary hydroxylated PMFs against AOM-induced colonic tumorigenesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources