Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010:97:243-57.
doi: 10.1016/S0091-679X(10)97014-3.

Drosophila S2 cells as a model system to investigate mitotic spindle dynamics, architecture, and function

Affiliations
Review

Drosophila S2 cells as a model system to investigate mitotic spindle dynamics, architecture, and function

Sara Moutinho-Pereira et al. Methods Cell Biol. 2010.

Abstract

In order to perpetuate their genetic content, eukaryotic cells have developed a microtubule-based machine known as the mitotic spindle. Independently of the system studied, mitotic spindles share at least one common characteristic--the dynamic nature of microtubules. This property allows the constant plasticity needed to assemble a bipolar structure, make proper kinetochore-microtubule attachments, segregate chromosomes, and finally disassemble the spindle and reform an interphase microtubule array. Here, we describe a variety of experimental approaches currently used in our laboratory to study microtubule dynamics during mitosis using Drosophila melanogaster S2 cells as a model. By using quantitative live cell imaging microscopy in combination with an advantageous labeling background, we illustrate how several cooperative pathways are used to build functional mitotic spindles. We illustrate different ways of perturbing spindle microtubule dynamics, including pharmacological inhibition and RNA interference of proteins that directly or indirectly impair microtubule dynamics. Additionally, we demonstrate the advantage of using fluorescent speckle microscopy to investigate an intrinsic property of spindle microtubules known as poleward flux. Finally, we developed a set of laser microsurgery-based experiments that allow, with unique spatiotemporal resolution, the study of specific spindle structures (e.g., centrosomes, microtubules, and kinetochores) and their respective roles during mitosis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources