Nanoparticle-induced pulmonary toxicity
- PMID: 20719818
- DOI: 10.1258/ebm.2010.010021
Nanoparticle-induced pulmonary toxicity
Abstract
In recent decades, advances in nanotechnology engineering have given rise to the rapid development of many novel applications in the biomedical field. However, studies into the health and safety of these nanomaterials are still lacking. The main concerns are the adverse effects to health caused by acute or chronic exposure to nanoparticles (NPs), especially in the workplace environment. The lung is one of the main routes of entry for NPs into the body and, hence, a likely site for accumulation of NPs. Once NPs enter the interstitial air spaces and are quickly taken up by alveolar cells, they are likely to induce toxic effects. In this review, we highlight the different aspects of lung toxicity resulting from NP exposure, such as generation of oxidative stress, DNA damage and inflammation leading to fibrosis and pneumoconiosis, and the underlying mechanisms causing pulmonary toxicity.
Similar articles
-
Nanomaterials and lung toxicity: interactions with airways cells and relevance for occupational health risk assessment.Int J Immunopathol Pharmacol. 2006 Oct-Dec;19(4 Suppl):3-10. Int J Immunopathol Pharmacol. 2006. PMID: 17291399 Review.
-
Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species.J Phys Chem B. 2008 Oct 30;112(43):13608-19. doi: 10.1021/jp712087m. Epub 2008 Oct 3. J Phys Chem B. 2008. PMID: 18831567
-
Evaluating the toxicity of selected types of nanochemicals.Rev Environ Contam Toxicol. 2012;215:39-121. doi: 10.1007/978-1-4614-1463-6_2. Rev Environ Contam Toxicol. 2012. PMID: 22057930 Review.
-
Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects.Aquat Toxicol. 2007 Oct 30;84(4):415-30. doi: 10.1016/j.aquatox.2007.07.009. Epub 2007 Jul 25. Aquat Toxicol. 2007. PMID: 17727975
-
Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster.Toxicol Appl Pharmacol. 2010 Feb 1;242(3):263-9. doi: 10.1016/j.taap.2009.10.016. Epub 2009 Oct 27. Toxicol Appl Pharmacol. 2010. PMID: 19874832
Cited by
-
Extracellular cathepsin S and intracellular caspase 1 activation are surrogate biomarkers of particulate-induced lysosomal disruption in macrophages.Part Fibre Toxicol. 2016 Apr 23;13:19. doi: 10.1186/s12989-016-0129-5. Part Fibre Toxicol. 2016. PMID: 27108091 Free PMC article.
-
Prediction of Dispersion Rate of Airborne Nanoparticles in a Gas-Liquid Dual-Microchannel Separated by a Porous Membrane: A Numerical Study.Micromachines (Basel). 2022 Dec 14;13(12):2220. doi: 10.3390/mi13122220. Micromachines (Basel). 2022. PMID: 36557519 Free PMC article.
-
Silibinin Attenuates Silica Dioxide Nanoparticles-Induced Inflammation by Suppressing TXNIP/MAPKs/AP-1 Signaling.Cells. 2020 Mar 10;9(3):678. doi: 10.3390/cells9030678. Cells. 2020. PMID: 32164364 Free PMC article.
-
Nonmicrobial-mediated inflammatory airway diseases--an update.J Physiol Biochem. 2014 Mar;70(1):263-70. doi: 10.1007/s13105-013-0297-9. Epub 2013 Nov 29. J Physiol Biochem. 2014. PMID: 24293217 Review.
-
Evaluation of the effect of time on the distribution of zinc oxide nanoparticles in tissues of rats and mice: a systematic review.IET Nanobiotechnol. 2016 Jun;10(3):97-106. doi: 10.1049/iet-nbt.2015.0006. IET Nanobiotechnol. 2016. PMID: 27256887 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous