Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jun 23:2010:606802.
doi: 10.4061/2010/606802.

CSF Biomarkers for Alzheimer's Disease Diagnosis

Affiliations

CSF Biomarkers for Alzheimer's Disease Diagnosis

A Anoop et al. Int J Alzheimers Dis. .

Abstract

Alzheimer's disease (AD) is the most common form of dementia that affects several million people worldwide. The major neuropathological hallmarks of AD are the presence of extracellular amyloid plaques that are composed of Abeta40 and Abeta42 and intracellular neurofibrillary tangles (NFT), which is composed of hyperphosphorylated protein Tau. While the amyloid plaques and NFT could define the disease progression involving neuronal loss and dysfunction, significant cognitive decline occurs before their appearance. Although significant advances in neuroimaging techniques provide the structure and physiology of brain of AD cases, the biomarker studies based on cerebrospinal fluid (CSF) and plasma represent the most direct and convenient means to study the disease progression. Biomarkers are useful in detecting the preclinical as well as symptomatic stages of AD. In this paper, we discuss the recent advancements of various biomarkers with particular emphasis on CSF biomarkers for monitoring the early development of AD before significant cognitive dysfunction.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Pathological cascades and potential biomarkers of AD. Proteolytic cleavage of APP first by β-secretase followed by γ-secretase can produce Aβ42 and other shorter Aβ fragments. The subsequent aggregation of Aβ42 results in oligomers and amyloid fibrils. Amyloid fibrils are eventually deposited as senile plaques as shown. The toxicity of oligomers and amyloid fibrils could lead to the cascade of tau-hyperphosphorylation, which is otherwise bound to microtubules, providing microtubule stability. Upon hyperphosphorylation, tau dissociates from microtubules and aggregates into NFT, which could eventually cause increased cytoskeleton flexibility and neuronal death.

References

    1. Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Archives of Neurology. 2003;60(8):1119–1122. - PubMed
    1. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimer’s and Dementia. 2007;3(3):186–191. - PubMed
    1. Selkoe DJ. Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nature Cell Biology. 2004;6(11):1054–1061. - PubMed
    1. Lazo ND, Maji SK, Fradinger EA, et al. The amyloid beta protein. In: Sipe JD, editor. Amyloid Protein-The Beta Sheet Conformation and Disease. Weinheim, Germany: Wiley-VCH Publishers; 2005. pp. 385–491.
    1. Grundke-Iqbal I, Iqbal K, Tung Y-C. Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proceedings of the National Academy of Sciences of the United States of America. 1986;83(13):44913–4917. - PMC - PubMed

LinkOut - more resources