Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Aug 1;75(6):E339-46.
doi: 10.1111/j.1750-3841.2010.01659.x.

Mass transfer and nutrient absorption in a simulated model of small intestine

Affiliations

Mass transfer and nutrient absorption in a simulated model of small intestine

A Tharakan et al. J Food Sci. .

Abstract

There is an increasing need to understand how food formulations behave in vivo from both food and pharma industries. A number of models have been proposed for the stomach, but few are available for the other parts of the gastrointestinal tract. An experimental rig that simulates the segmentation motion occurring in the small intestine has been developed. The objective of developing such an experimental apparatus was to study mass transport phenomena occurring in the lumen and their potential effect on the concentration of species available for absorption. When segmentation motion was applied the mass transfer coefficient in the lumen side was increased up to a factor of 7. The viscosity of the lumen, as influenced by guar gum concentration, had a profound effect on the mass transfer coefficient. The experimental model was also used to demonstrate that glucose available for absorption, resulting from starch hydrolysis, can be significantly reduced by altering the lumen viscosity. Results suggest that absorption of nutrients could be controlled by mass transfer. Practical Application: To address health-related diseases such as obesity, novel foods that provide advanced functions are required. To achieve the full potential offered by the latest developments in the field of food material science, a fundamental understanding of the behavior of food structures in vivo is required. Using the developed gut model we have demonstrated that absorption of nutrients can be controlled by mass transfer limitations.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources