Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Sep;9(9):885-94.
doi: 10.1016/S1474-4422(10)70183-6.

Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond

Affiliations
Review

Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond

Alexandra Durr. Lancet Neurol. 2010 Sep.

Abstract

Cerebellar ataxias with autosomal dominant transmission are rare, but identification of the associated genes has provided insight into the mechanisms that could underlie other forms of genetic or non-genetic ataxias. In many instances, the phenotype is not restricted to cerebellar dysfunction but includes complex multisystemic neurological deficits. The designation of the loci, SCA for spinocerebellar ataxia, indicates the involvement of at least two systems: the spinal cord and the cerebellum. 11 of 18 known genes are caused by repeat expansions in the corresponding proteins, sharing the same mutational mechanism. All other SCAs are caused by either conventional mutations or large rearrangements in genes with different functions, including glutamate signalling (SCA5/SPTBN2) and calcium signalling (SCA15/16/ITPR1), channel function (SCA13/KCNC3, SCA14/PRKCG, SCA27/FGF14), tau regulation (SCA11/TTBK2), and mitochondrial activity (SCA28/AFG3L2) or RNA alteration (SCA31/BEAN-TK2). The diversity of underlying mechanisms that give rise to the dominant cerebellar ataxias need to be taken into account to identify therapeutic targets.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources