Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Mar;120(2):97-104.
doi: 10.1007/BF01872392.

Hypo-osmotic stimulation of active Na+ transport in frog muscle: apparent upregulation of Na+ pumps

Affiliations

Hypo-osmotic stimulation of active Na+ transport in frog muscle: apparent upregulation of Na+ pumps

R A Venosa. J Membr Biol. 1991 Mar.

Abstract

The purpose of this work was to determine if hypotonicity, in addition to the stimulation of active Na+ transport (Venosa, R.A., 1978, Biochim. Biophys. Acta 510:378-383), promoted changes in (i) active K+ influx, (ii) passive Na+ and K+ fluxes, and (iii) the number of 3H-ouabain binding sites. The results indicate that a reduction of external osmotic pressure (pi) to one-half of its normal value (pi = 0.5) produced the following effects: (i) an increase in active K+ influx on the order of 160%, (ii) a 20% reduction in Na+ influx and K+ permeability (PK), and (iii) a 40% increase in the apparent density of ouabain binding sites. These data suggest that the hypotonic stimulation of the Na+ pump is not caused by an increased leak of either Na+ (inward) or K+ (outward). It is unlikely that the stimulation of active Na+ extrusion and the rise in the apparent number of pump sites produced by hypotonicity were due to a reduction of the intracellular ionic strength. It appears that, at least in part, the stimulation of active Na+ transport takes place whenever muscles are transferred from one medium to another of lower tonicity even if neither one was hypotonic (for instance pi = 2 to pi = 1 transfer). Comparison of the present results with those previously reported indicate that in addition to the number of pump sites, the cycling rate of the pump is increased by hypotonicity. Active Na+ and K+ fluxes were not significantly altered by hypertonicity (pi = 2).

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nature. 1987 Nov 5-11;330(6143):66-8 - PubMed
    1. J Physiol. 1963 Nov;169:312-29 - PubMed
    1. Proc R Soc Lond B Biol Sci. 1954 May 27;142(908):359-82 - PubMed
    1. Pflugers Arch. 1975 Jul 28;358(3):275-88 - PubMed
    1. Science. 1963 Oct 11;142(3589):246-8 - PubMed

Publication types

LinkOut - more resources