Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Aug 19;466(7309):954-8.
doi: 10.1038/nature09331.

A strong ferroelectric ferromagnet created by means of spin-lattice coupling

Affiliations

A strong ferroelectric ferromagnet created by means of spin-lattice coupling

June Hyuk Lee et al. Nature. .

Erratum in

  • Nature. 2011 Aug 4;476(7358):114

Abstract

Ferroelectric ferromagnets are exceedingly rare, fundamentally interesting multiferroic materials that could give rise to new technologies in which the low power and high speed of field-effect electronics are combined with the permanence and routability of voltage-controlled ferromagnetism. Furthermore, the properties of the few compounds that simultaneously exhibit these phenomena are insignificant in comparison with those of useful ferroelectrics or ferromagnets: their spontaneous polarizations or magnetizations are smaller by a factor of 1,000 or more. The same holds for magnetic- or electric-field-induced multiferroics. Owing to the weak properties of single-phase multiferroics, composite and multilayer approaches involving strain-coupled piezoelectric and magnetostrictive components are the closest to application today. Recently, however, a new route to ferroelectric ferromagnets was proposed by which magnetically ordered insulators that are neither ferroelectric nor ferromagnetic are transformed into ferroelectric ferromagnets using a single control parameter, strain. The system targeted, EuTiO(3), was predicted to exhibit strong ferromagnetism (spontaneous magnetization, approximately 7 Bohr magnetons per Eu) and strong ferroelectricity (spontaneous polarization, approximately 10 microC cm(-2)) simultaneously under large biaxial compressive strain. These values are orders of magnitude higher than those of any known ferroelectric ferromagnet and rival the best materials that are solely ferroelectric or ferromagnetic. Hindered by the absence of an appropriate substrate to provide the desired compression we turned to tensile strain. Here we show both experimentally and theoretically the emergence of a multiferroic state under biaxial tension with the unexpected benefit that even lower strains are required, thereby allowing thicker high-quality crystalline films. This realization of a strong ferromagnetic ferroelectric points the way to high-temperature manifestations of this spin-lattice coupling mechanism. Our work demonstrates that a single experimental parameter, strain, simultaneously controls multiple order parameters and is a viable alternative tuning parameter to composition for creating multiferroics.

PubMed Disclaimer

Comment in

  • A strong ferroelectric ferromagnet created by means of spin-lattice coupling.
    Lee JH, Fang L, Vlahos E, Ke X, Jung YW, Kourkoutis LF, Kim JW, Ryan PJ, Heeg T, Roeckerath M, Goian V, Bernhagen M, Uecker R, Hammel PC, Rabe KM, Kamba S, Schubert J, Freeland JW, Muller DA, Fennie CJ, Schiffer P, Gopalan V, Johnston-Halperin E, Schlom DG. Lee JH, et al. Nature. 2011 Jul 6;476(7358):114. doi: 10.1038/nature10219. Nature. 2011. PMID: 21734661 No abstract available.

References

    1. Phys Rev Lett. 2010 May 21;104(20):207204 - PubMed
    1. Nat Mater. 2007 Apr;6(4):296-302 - PubMed
    1. Phys Rev Lett. 2002 Sep 2;89(10):107001 - PubMed
    1. Nature. 2003 Nov 6;426(6962):55-8 - PubMed
    1. Nat Mater. 2007 Jan;6(1):21-9 - PubMed

Publication types

LinkOut - more resources