NTP toxicology and carcinogenesis studies of chromium picolinate monohydrate (CAS No. 27882-76-4) in F344/N rats and B6C3F1 mice (feed studies)
- PMID: 20725156
NTP toxicology and carcinogenesis studies of chromium picolinate monohydrate (CAS No. 27882-76-4) in F344/N rats and B6C3F1 mice (feed studies)
Abstract
Chromium picolinate monohydrate is the commercially available form of chromium picolinate. Chromium picolinate is one of a number of compounds that contain chromium in the trivalent state (Cr III), which is the predominant form of chromium in nature. Humans ingest Cr III in food and dietary supplements. The major uses of Cr III in the chemical and manufacturing industries include production of chromium pigments and leather tanning. Chromium picolinate was nominated by the National Cancer Institute and a private individual for testing based on the potential for widespread consumer exposure from use as a dietary supplement. Male and female F344/N rats and B6C3F1 mice were exposed to chromium picolinate monohydrate (95% to 96% pure) in feed for 3 months or 2 years. Genetic toxicology studies with chromium picolinate monohydrate were conducted in Salmonella typhimurium and mouse peripheral blood erythrocytes. Genetic toxicology studies with chromium picolinate were conducted in S. typhimurium and rat bone marrow cells. 3-MONTH STUDY IN RATS: Groups of 10 male and 10 female rats were fed diets containing 0, 80, 240, 2,000, 10,000, or 50,000 ppm chromium picolinate monohydrate (equivalent to average daily doses of approximately 7, 20, 160, 800, and 4,240 mg chromium picolinate monohydrate/kg body weight to males and 6, 20, 160, 780, and 4,250 mg/kg to females) for 14 weeks. All rats survived to the end of the study. Mean body weights and feed consumption of all exposed groups of males and females were similar to those of the control groups throughout the study. No exposure-related lesions occurred in males or females. 3-MONTH STUDY IN MICE: Groups of 10 male and 10 female mice were fed diets containing 0, 80, 240, 2,000, 10,000, or 50,000 ppm chromium picolinate monohydrate (equivalent to average daily doses of approximately 17, 50, 450, 2,300, and 11,900 mg chromium picolinate monohydrate/kg body weight to males and 14, 40, 370, 1,775, and 9,140 mg/kg to females) for 14 weeks. All mice survived to the end of the study. Mean body weights and feed consumption of all exposed groups were similar to those of the control groups throughout the study. No exposure-related lesions occurred in male or female mice. 2-YEAR STUDY IN RATS: Groups of 50 male and 50 female rats were fed diets containing 0, 2,000, 10,000, or 50,000 ppm chromium picolinate monohydrate (equivalent to average daily doses of approximately 90, 460, and 2,400 mg/kg to males and 100, 510, and 2,630 mg/kg to females) for 105 weeks. Survival of all exposed groups of males and females was similar to that of the control groups. Mean body weights and feed consumption of exposed groups of males and females were generally similar to those of the controls throughout the study. The incidence of preputial gland adenoma was significantly increased in males exposed to 10,000 ppm and exceeded the historical control ranges. 2-YEAR STUDY IN MICE: Groups of 50 male and 50 female mice were fed diets containing 0, 2,000, 10,000, or 50,000 ppm chromium picolinate monohydrate (equivalent to average daily doses of approximately 250, 1,200, and 6,565 mg/kg to males and 240, 1,200, and 6,100 mg/kg to females) for 105 weeks. Survival of all exposed groups of males and females was similar to that of the control groups. Mean body weights of exposed groups of males were generally similar to those of the controls throughout the study; mean body weights of 50,000 ppm females was 10% less than the control group at 1 year. Feed consumption by exposed groups of males and females was similar to that by the controls throughout the study. No neoplasms or nonneoplastic lesions were attributed to exposure to chromium picolinate monohydrate.
Genetic toxicology: In the standard screening assays conducted by the NTP, chromium picolinate monohydrate showed no clear evidence of genotoxicity. It was not mutagenic in Salmonella typhimurium strains TA98 or TA100 or Escherichia coli strain WP2 uvrA/pKM101 when tested with or without exogenous metabolic activation (S9). No increase in the frequency of micronucleated normochromatic erythrocytes was observed in male B6C3F1 mice administered chromium picolinate monohydrate in feed for 3 months. A small increase in micronucleated normochromatic erythrocytes was seen in female mice at the highest exposure concentration tested, and the results in female mice were considered equivocal. Additional genotoxicity testing was conducted with chromium picolinate (not the monohydrate form of the compound), and results were also negative. No induction of gene mutations was observed in two independent studies conducted in several strains of S. typhimurium with and without S9. No induction of micronucleated polychromatic erythrocytes was observed in bone marrow of male F344/N rats treated with chromium picolinate by oral gavage three times at 24-hour intervals.
Conclusions: Under the conditions of these 2-year feed studies there was equivocal evidence of carcinogenic activity* of chromium picolinate monohydrate in male F344/N rats based on an increase in the incidence of preputial gland adenoma. There was no evidence of carcinogenic activity of chromium picolinate monohydrate in female F344/N rats or in male or female B6C3F1 mice.
Similar articles
-
Toxicology and carcinogenesis studies of goldenseal root powder (Hydrastis Canadensis) in F344/N rats and B6C3F1 mice (feed studies).Natl Toxicol Program Tech Rep Ser. 2010 Aug;(562):1-188. Natl Toxicol Program Tech Rep Ser. 2010. PMID: 21372858
-
Toxicology and carcinogenesis studies of p-nitrotoluene (CAS no. 99-99-0) in F344/N rats and B6C3F(1) mice (feed studies).Natl Toxicol Program Tech Rep Ser. 2002 May;(498):1-277. Natl Toxicol Program Tech Rep Ser. 2002. PMID: 12118261
-
NTP Toxicology and Carcinogenesis Studies of EMODIN (CAS NO. 518-82-1) Feed Studies in F344/N Rats and B6C3F1 Mice.Natl Toxicol Program Tech Rep Ser. 2001 Jun;493:1-278. Natl Toxicol Program Tech Rep Ser. 2001. PMID: 12563347
-
Toxicology and carcinogenesis studies of milk thistle extract (CAS No. 84604-20-6) in F344/N rats and B6C3F1 mice (Feed Studies).Natl Toxicol Program Tech Rep Ser. 2011 May;(565):1-177. Natl Toxicol Program Tech Rep Ser. 2011. PMID: 21685957 Review.
-
New nonpurified diet (NTP-2000) for rodents in the National Toxicology Program's toxicology and carcinogenesis studies.J Nutr. 1997 May;127(5 Suppl):842S-846S. doi: 10.1093/jn/127.5.842S. J Nutr. 1997. PMID: 9164250 Review.
Cited by
-
Hexavalent chromium is carcinogenic to F344/N rats and B6C3F1 mice after chronic oral exposure.Environ Health Perspect. 2009 May;117(5):716-22. doi: 10.1289/ehp.0800208. Epub 2008 Dec 31. Environ Health Perspect. 2009. PMID: 19479012 Free PMC article.
-
A chronic oral reference dose for hexavalent chromium-induced intestinal cancer.J Appl Toxicol. 2014 May;34(5):525-36. doi: 10.1002/jat.2907. Epub 2013 Aug 14. J Appl Toxicol. 2014. PMID: 23943231 Free PMC article.
-
Integration of mechanistic and pharmacokinetic information to derive oral reference dose and margin-of-exposure values for hexavalent chromium.J Appl Toxicol. 2018 Mar;38(3):351-365. doi: 10.1002/jat.3545. Epub 2017 Oct 24. J Appl Toxicol. 2018. PMID: 29064106 Free PMC article.
-
Reproducibility of NMR analysis of urine samples: impact of sample preparation, storage conditions, and animal health status.Biomed Res Int. 2013;2013:878374. doi: 10.1155/2013/878374. Epub 2013 Jun 23. Biomed Res Int. 2013. PMID: 23865070 Free PMC article.
-
Comparative carcinogenic and non-carcinogenic health risks, and cytogenotoxicity of wastewaters from natural and artificial fishponds indiscriminately disposed in Nigeria.Toxicol Res (Camb). 2024 Dec 13;13(6):tfae213. doi: 10.1093/toxres/tfae213. eCollection 2024 Dec. Toxicol Res (Camb). 2024. PMID: 39677496
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources