Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May 21:2:13.
doi: 10.3389/fnagi.2010.00013. eCollection 2010.

Synapses, synaptic activity and intraneuronal abeta in Alzheimer's disease

Affiliations

Synapses, synaptic activity and intraneuronal abeta in Alzheimer's disease

Davide Tampellini et al. Front Aging Neurosci. .

Abstract

beta-Amyloid peptide accumulation plays a central role in the pathogenesis of Alzheimer's disease. Aberrant beta-amyloid buildup in the brain has been shown to be present both in the extracellular space and within neurons. Synapses are important targets of beta-amyloid, and alterations in synapses better correlate with cognitive impairment than amyloid plaques or neurofibrillary tangles. The link between beta-amyloid and synapses became even tighter when it was discovered that beta-amyloid accumulates within synapses and that synaptic activity modulates beta-amyloid secretion. Currently, a central question in Alzheimer's disease research is what role synaptic activity plays in the disease process, and how specifically beta-amyloid is involved in the synaptic dysfunction that characterizes the disease.

Keywords: Alzheimer disease; amyloid; amyloid precursor protein; neprilysin; neurodegeneration; neuron; synapse; synaptic plasticity.

PubMed Disclaimer

Figures

Figure 1
Figure 1
(A) Accumulation of intraneuronal Aβ42 at early stages of AD occurs progressively in a synapse (left) and is associated with pathological alterations compared to a normal synapse (right). (B) Intraneuronal Aβ42 is released in the extracellular space following degeneration of the synapse (left). Release of intraneuronal Aβ42 into the extracellular space may contribute to the toxic spread of Aβ pathology to a nearby synapse (right).

Similar articles

Cited by

References

    1. Almeida C. G., Takahashi R. H., Gouras G. K. (2006). Beta-amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin-proteasome system. J. Neurosci. 26, 4277–428810.1523/JNEUROSCI.5078-05.2006 - DOI - PMC - PubMed
    1. Almeida C. G., Tampellini D., Takahashi R. H., Greengard P., Lin M. T., Snyder E. M., Gouras G. K. (2005). Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobiol. Dis. 20, 187–19810.1016/j.nbd.2005.02.008 - DOI - PubMed
    1. Apelt J., Ach K., Schliebs R. (2003). Aging-related down-regulation of neprilysin, a putative beta-amyloid-degrading enzyme, in transgenic Tg2576 Alzheimer-like mouse brain is accompanied by an astroglial upregulation in the vicinity of beta-amyloid plaques. Neurosci. Lett. 339, 183–18610.1016/S0304-3940(03)00030-2 - DOI - PubMed
    1. Bayer T. A., Wirths O. (2010). Intracellular accumulation of amyloid-beta – a predictor for synaptic dysfunction and neuron loss in Alzheimer's disease. Front. Aging Neurosci. 2, 1–10 - PMC - PubMed
    1. Billings L. M., Oddo S., Green K. N., McGaugh J. L., LaFerla F. M. (2005). Intraneuronal Abeta causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice. Neuron 45, 675–68810.1016/j.neuron.2005.01.040 - DOI - PubMed

LinkOut - more resources