Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Sep 17;12(18):3990-3.
doi: 10.1021/ol1015493.

Room-temperature alternative to the Arbuzov reaction: the reductive deoxygenation of acyl phosphonates

Affiliations

Room-temperature alternative to the Arbuzov reaction: the reductive deoxygenation of acyl phosphonates

Sean M A Kedrowski et al. Org Lett. .

Abstract

The reductive deoxygenation of acyl phosphonates using a Wolff-Kishner-like sequence is described. This transformation allows direct access to alkyl phosphonates from acyl phosphonates at room temperature. The method can be combined with acyl phosphonate synthesis into a one pot, four-step procedure for the conversion of carboxylic acids into alkyl phosphonates. The methodology works well for a variety of aliphatic acids and shows a functional group tolerance similar to that of other hydrazone-forming reactions.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1
The Arbuzov Reaction
Scheme 2
Scheme 2
Retrosynthesis of Alkyl Phosphonates from Carboxylic Acids
Scheme 3
Scheme 3
The Electron-Withdrawing Phosphonate Stabilizes the Carbanionic Character of the Key Intermediate
Scheme 4
Scheme 4
The Reaction Course of Acyl Phosphonates with Hydrazine is pH-Dependent

Similar articles

Cited by

References

    1. Engel R, Cohen JI. Synthesis of carbon-phosphorus bonds. 2nd ed. CRC Press; Boca Raton, FL: 2004.
    2. Savignac P, Iorga B. Modern phosphonate chemistry. CRC Press; Boca Raton, FL: 2003.
    1. Boutagy J, Thomas R. Chem. Rev. 1974;74:87.
    2. Horner L, Hoffmann H, Wippel HG. Chem. Ber.-Recl. 1958;91:61.
    3. Horner L, Hoffmann H, Wippel HG, Klahre G. Chem. Ber.-Recl. 1959;92:2499.
    4. Wadsworth W, Emmons WD. J. Am. Chem. Soc. 1961;83:1733.
    1. De Clercq E. Nat. Rev. Drug Discov. 2002;1:13. - PubMed
    2. De Clercq E, Holy A. Nat. Rev. Drug Discov. 2005;4:928. - PubMed
    3. Metcalf WW, van der Donk WA. Ann. Rev. Biochem. 2009;78:65. - PMC - PubMed
    4. Okuhara M, Goto T. Drugs Exp. Clin. Res. 1981;7:559.
    5. Okuhara M, Kuroda Y, Goto T, Okamoto M, Terano H, Kohsaka M, Aoki H, Imanaka H. J. Antibiot. 1980;33:13. - PubMed
    6. White AK, Metcalf WW. Ann. Rev. Microbiol. 2007;61:379. - PubMed
    1. Brandt GS. Ph.D. Dissertation. California Institute of Technology; Pasadena, CA: 2003.
    2. Chen L, Wu L, Otaka A, Smyth MS, Roller PP, Burke TR, Denhertog J, Zhang ZY. Biochem. Biophys. Res. Commun. 1995;216:976. - PubMed
    3. Engel R. Chem. Rev. 1977;77:349.
    4. Nieschalk J, Ohagan D. J. Chem. Soc., Chem. Commun. 1995:719.
    5. Oleksyszyn J, Powers JC. Proteolytic Enzymes: Serine and Cysteine Peptidases. Vol. 244. Academic Press Inc; San Diego: 1994. p. 423.
    6. Panigrahi K, Eggen M, Maeng JH, Shen QR, Berkowitz DB. Chem. Biol. 2009;16:928. - PMC - PubMed
    7. Petersson EJ. Ph.D Dissertation. California Institute of Technology; Pasadena, CA: 2005.
    8. Rothman DM, Petersson EJ, Vazquez ME, Brandt GS, Dougherty DA, Imperiali B. J. Am Chem Soc. 2005;127:846. - PubMed
    9. Zheng WP, Schwarzer D, LeBeau A, Weller JL, Klein DC, Cole PA. J. Biol. Chem. 2005;280:10462. - PubMed
    10. Zheng WP, Zhang ZS, Ganguly S, Weller JL, Klein DC, Cole PA. Nat. Struct. Biol. 2003;10:1054. - PubMed
    1. Also known as the Michaelis-Arbuzov reaction.

Publication types