Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec;7(12):1862-9.
doi: 10.1016/j.hrthm.2010.08.016. Epub 2010 Aug 19.

Knock-in gain-of-function sodium channel mutation prolongs atrial action potentials and alters atrial vulnerability

Affiliations

Knock-in gain-of-function sodium channel mutation prolongs atrial action potentials and alters atrial vulnerability

Andreas Blana et al. Heart Rhythm. 2010 Dec.

Abstract

Background: Patients with long QT syndrome (LQTS) are at increased risk not only for ventricular arrhythmias but also for atrial pathology including atrial fibrillation (AF). Some patients with "lone" AF carry Na(+)-channel mutations.

Objective: The purpose of this study was to determine the mechanisms underlying atrial pathology in LQTS.

Methods: In mice with a heterozygous knock-in long QT syndrome type 3 (LQT3) mutant of the cardiac Na(+) channel (ΔKPQ-SCN5A) and wild-type (WT) littermates, atrial size, function, and electrophysiologic parameters were measured in intact Langendorff-perfused hearts, and histologic analysis was performed.

Results: Atrial action potential duration, effective refractory period, cycle length, and PQ interval were prolonged in ΔKPQ-SCN5A hearts (all P < .05). Flecainide (1 μM) reversed atrial action potential duration prolongation and induced postrepolarization refractoriness (P < .05). Arrhythmias were infrequent during regular rapid atrial rate in both WT and ΔKPQ-SCN5A but were inducible in 15 (38%) of 40 ΔKPQ-SCN5A and 8 (29%) of 28 WT mice upon extrastimulation. Pacing protocols generating rapid alterations in rate provoked atrial extrasystoles and arrhythmias in 6 (66%) of 9 ΔKPQ-SCN5A but in 0 (0%) of 6 WT mice (P < .05). Atrial diameter was increased by nearly 10% in ΔKPQ-SCN5A mice > 5 months old without increase in fibrotic tissue.

Conclusion: Murine hearts bearing an LQT3 mutation show abnormalities in atrial electrophysiology and subtle changes in atrial dimension, including an atrial arrhythmogenic phenotype on provocation. These results support clinical data suggesting that LQTS mutations can cause atrial pathology and arrhythmogenesis and indicate that murine sodium channel LQTS models may be useful for exploring underlying mechanisms.

PubMed Disclaimer

Comment in

  • SCN5A mutations in atrial fibrillation.
    Amin AS, Bhuiyan ZA. Amin AS, et al. Heart Rhythm. 2010 Dec;7(12):1870-1. doi: 10.1016/j.hrthm.2010.09.012. Epub 2010 Sep 17. Heart Rhythm. 2010. PMID: 20850563 No abstract available.

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources