Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov;56(5):513-7.
doi: 10.1097/FJC.0b013e3181f50a70.

Redox regulation of myocardial ERK 1/2 phosphorylation in experimental hyperthyroidism: role of thioredoxin-peroxiredoxin system

Affiliations

Redox regulation of myocardial ERK 1/2 phosphorylation in experimental hyperthyroidism: role of thioredoxin-peroxiredoxin system

Alex Sander da Rosa Araujo et al. J Cardiovasc Pharmacol. 2010 Nov.

Abstract

The present study was conducted to test whether adaptation in the antioxidant system would differentially modulate prosurvival and proapoptotic proteins in hyperthyroidism-induced cardiac hypertrophy. Male Wistar rats were divided into 4 groups: control, vitamin E (20 mg · kg(-1) · d(-1) subcutaneously, 28 days), thyroxine (T4) (12 mg/L in drinking water for 28 days), and T4 + vitamin E. Cardiac mass, redox ratio, glutathione peroxidase (GPx) and glutathione reductase (GR) activities, NF-E2-related factor 2 (Nrf2) thioredoxin-1 (Trx-1), peroxiredoxin-6 (Prx-6), phospho-extracellular-signal-regulated kinases 1/2 (p-ERK 1/2)/extracellular-signal-regulated kinases 1/2 (ERK1/2), and phospho-c-Jun N-terminal kinase (p-JNK)/c-Jun N-terminal kinase (JNK) myocardial protein expression were quantified. Cardiac hypertrophy was attenuated in the T4 + vitamin E group. The redox ratio; GPx and GR; as well as Nrf2, Trx-1, Prx-6, and p-ERK1/2/ERK1/2 immunocontent were elevated in T4 group. All these effects were attenuated by vitamin E administration. p-JNK/JNK remained unchanged in all the groups. The overall results suggest that redox imbalance due to hyperthyroidism induce adaptation of antioxidant systems, favoring ERK1/2 activation and leading to development of cardiac hypertrophy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources