Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Aug 24;4(8):4445-54.
doi: 10.1021/nn100698u.

Blinking suppression in CdSe/ZnS single quantum dots by TiO2 nanoparticles

Affiliations

Blinking suppression in CdSe/ZnS single quantum dots by TiO2 nanoparticles

Morihiko Hamada et al. ACS Nano. .

Abstract

The photoluminescence of semiconductor quantum dots and fluorescence of single molecules intermittently turn ON and OFF, a phenomenon referred to as blinking. In quantum dots, blinking occurs as a result of intermittent Auger ionization, which results in the formation of positively charged quantum dots. Due to strong Coulombic interactions, successive photoactivation of a charged quantum dot results in nonradiative carrier recombination, inducing long-lived OFF states in the intensity trajectories. Blinking is an undesirable property with respect to applications of quantum dots toward single-molecule imaging and single-photon logic devices. Here we report significant blinking suppression for CdSe/ZnS single quantum dots in the presence of TiO(2) nanoparticles. In this work, we continuously recorded photoluminescence intensity trajectories of single quantum dots with and without TiO(2) nanoparticles. Interestingly, the intensity trajectory of a single quantum dot that was covalently tethered on a cover glass and dipped in water resulted in near-complete blinking suppression as soon as a TiO(2) nanoparticle solution was introduced. The blinking suppression was associated with a decrease in the photoluminescence intensity but without considerable changes in the photoluminescence lifetime, indicating that nonradiative carrier recombination in quantum dots was channeled into electron transfer to TiO(2) nanoparticles and back electron transfer to quantum dots. On the basis of these experiments and recent reports on photoinduced electron transfer from quantum dots to TiO(2) nanoparticles, we hypothesize that blinking of a quantum dot can be suppressed by increasing the rate of nonradiative regeneration of its neutral state by interfacing with a well-defined charge carrier trap such as an electron acceptor, which accepts an electron during Auger ionization and neutralizes the charged quantum dot by back electron transfer. Correlation between blinking suppression and electron transfer in a quantum dot-TiO(2) nanoparticle system may have important implications, for the preparation of nonblinking quantum dot for incessant and on-demand light emission, donor-acceptor systems for efficient solar energy harvesting, and hybrid semiconductor materials for quantum optical devices.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources