Spatially dependent polya tree modeling for survival data
- PMID: 20731644
- PMCID: PMC3025072
- DOI: 10.1111/j.1541-0420.2010.01468.x
Spatially dependent polya tree modeling for survival data
Abstract
With the proliferation of spatially oriented time-to-event data, spatial modeling in the survival context has received increased recent attention. A traditional way to capture a spatial pattern is to introduce frailty terms in the linear predictor of a semiparametric model, such as proportional hazards or accelerated failure time. We propose a new methodology to capture the spatial pattern by assuming a prior based on a mixture of spatially dependent Polya trees for the baseline survival in the proportional hazards model. Thanks to modern Markov chain Monte Carlo (MCMC) methods, this approach remains computationally feasible in a fully hierarchical Bayesian framework. We compare the spatially dependent mixture of Polya trees (MPT) approach to the traditional spatial frailty approach, and illustrate the usefulness of this method with an analysis of Iowan breast cancer survival data from the Surveillance, Epidemiology, and End Results (SEER) program of the National Cancer Institute. Our method provides better goodness of fit over the traditional alternatives as measured by log pseudo marginal likelihood (LPML), the deviance information criterion (DIC), and full sample score (FSS) statistics.
© 2010, The International Biometric Society.
Figures




Similar articles
-
A Bayesian semiparametric accelerated failure time model.Biometrics. 1999 Jun;55(2):477-83. doi: 10.1111/j.0006-341x.1999.00477.x. Biometrics. 1999. PMID: 11318203
-
Semiparametric proportional odds models for spatially correlated survival data.Lifetime Data Anal. 2005 Jun;11(2):175-91. doi: 10.1007/s10985-004-0382-z. Lifetime Data Anal. 2005. PMID: 15938545
-
Multivariate parametric spatiotemporal models for county level breast cancer survival data.Lifetime Data Anal. 2005 Mar;11(1):5-27. doi: 10.1007/s10985-004-5637-1. Lifetime Data Anal. 2005. PMID: 15747587 Review.
-
Parametric models for spatially correlated survival data for individuals with multiple cancers.Stat Med. 2008 May 30;27(12):2127-44. doi: 10.1002/sim.3141. Stat Med. 2008. PMID: 18167633 Free PMC article.
-
[Bayesian statistics in spatial epidemiology].Zhejiang Da Xue Xue Bao Yi Xue Ban. 2008 Nov;37(6):642-7. doi: 10.3785/j.issn.1008-9292.2008.06.017. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2008. PMID: 19084965 Review. Chinese.
Cited by
-
Flexible modeling of the hazard rate and treatment effects in long-term survival studies.Stat Methods Med Res. 2017 Oct;26(5):2455-2480. doi: 10.1177/0962280216688034. Epub 2017 Feb 2. Stat Methods Med Res. 2017. PMID: 28150523 Free PMC article.
-
Spatially explicit survival modeling for small area cancer data.J Appl Stat. 2018;45(3):568-585. doi: 10.1080/02664763.2017.1288200. Epub 2017 Feb 11. J Appl Stat. 2018. PMID: 30906096 Free PMC article.
-
Generalized accelerated failure time spatial frailty model for arbitrarily censored data.Lifetime Data Anal. 2017 Jul;23(3):495-515. doi: 10.1007/s10985-016-9361-4. Epub 2016 Mar 18. Lifetime Data Anal. 2017. PMID: 26993982 Free PMC article.
-
Comparison of Models Analyzing a Small Number of Observed Meningitis Cases in Navrongo, Ghana.J Agric Biol Environ Stat. 2017 Mar;22(1):76-104. doi: 10.1007/s13253-016-0270-5. Epub 2016 Dec 2. J Agric Biol Environ Stat. 2017. PMID: 38178919 Free PMC article.
-
Rubbery Polya Tree.Scand Stat Theory Appl. 2012 Mar;39(1):10.1111/j.1467-9469.2011.00761.x. doi: 10.1111/j.1467-9469.2011.00761.x. Scand Stat Theory Appl. 2012. PMID: 24368872 Free PMC article.
References
-
- Cox DR. Regression models and life tables (with discussion) Journal of the Royal Statistical Society, Series B. 1972;34:187–200.
-
- Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer; 2001.
-
- Banerjee S, Carlin BP. Semiparametric spatio-temporal frailty modeling. Environmetrics. 2003;14:523–535.
-
- Banerjee S, Carlin BP, Gelfand AE. Hierarchical Modeling and Analysis for Spatial Data. Boca Raton, FL: Chapman and Hall/CRC Press; 2004.
-
- Banerjee S, Dey DK. Semi-parametric proportional odds models for spatially correlated survival data. Lifetime Data Analysis. 2005;11:175–191. - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources