Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb;9(2):264-81.
doi: 10.1111/j.1467-7652.2010.00553.x. Epub 2010 Aug 19.

Deletion of fucose residues in plant N-glycans by repression of the GDP-mannose 4,6-dehydratase gene using virus-induced gene silencing and RNA interference

Affiliations
Free article

Deletion of fucose residues in plant N-glycans by repression of the GDP-mannose 4,6-dehydratase gene using virus-induced gene silencing and RNA interference

Kouki Matsuo et al. Plant Biotechnol J. 2011 Feb.
Free article

Abstract

Production of pharmaceutical glycoproteins in plants has many advantages in terms of safety and reduced costs. However, plant-produced glycoproteins have N-glycans with plant-specific sugar residues (core β-1,2-xylose and α-1,3-fucose) and a Lewis a (Le(a) ) epitope, i.e., Galβ(1-3)[Fucα(1-4)]GlcNAc. Because these sugar residues and glycan structures seemed to be immunogenic, several attempts have been made to delete them by repressing their respective glycosyltransferase genes. However, until date, such deletions have not been successful in completely eliminating the fucose residues. In this study, we simultaneously reduced the plant-specific core α-1,3-fucose and α-1,4-fucose residues in the Le(a) epitopes by repressing the Guanosine 5'-diphosphate (GDP)-D-mannose 4,6-dehydratase (GMD) gene, which is associated with GDP-L-fucose biosynthesis, in Nicotiana benthamiana plants. Repression of GMD was achieved using virus-induced gene silencing (VIGS) and RNA interference (RNAi). The proportion of fucose-free N-glycans found in total soluble protein from GMD gene-repressed plants increased by 80% and 95% following VIGS and RNAi, respectively, compared to wild-type plants. A small amount of putative galactose substitution in N-glycans from the NbGMD gene-repressed plants was observed, similar to what has been previously reported GMD-knockout Arabidopsis mutant. On the other hand, the recombinant mouse granulocyte-macrophage colony-stimulating factor (GM-CSF) with fucose-deleted N-glycans was successfully produced in NbGMD-RNAi transgenic N. benthamiana plants. Thus, repression of the GMD gene is thus very useful for deleting immunogenic total fucose residues and facilitating the production of pharmaceutical glycoproteins in plants.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data