Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov;91(5):691-9.
doi: 10.1016/j.exer.2010.08.015. Epub 2010 Aug 21.

A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, αA- and αB-crystallin

Affiliations

A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, αA- and αB-crystallin

Teresa M Treweek et al. Exp Eye Res. 2010 Nov.

Abstract

The principal lens proteins αA- and αB-crystallin are members of the small heat-shock protein (sHsp) family of molecular chaperone proteins. Via their chaperone action, αA- and αB-crystallin play an important role in maintaining lens transparency by preventing crystallin protein aggregation and precipitation. αB-crystallin is found extensively extralenticularly where it is stress inducible and acts as a chaperone to facilitate general protein stabilization. The structure of either αA- or αB-crystallin is not known nor is the mechanism of their chaperone action. Our earlier (1)H NMR spectroscopic studies determined that mammalian sHsps have a highly dynamic, polar and unstructured region at their extreme C-terminus (summarized in Carver (1999) Prog. Ret. Eye Res. 18, 431). This C-terminal extension acts as a solubilizing agent for the relatively hydrophobic protein and the complex it makes with its target proteins during chaperone action. In this study, αA- and αB-crystallin were (15)N-labelled and their (1)H-(15)N through-bond correlation, heteronuclear single-quantum coherence (HSQC) NMR spectra were assigned via standard methods. (1)H-(15)N spin-lattice (T(1)) and spin-spin (T(2)) relaxation times were measured for αA- and αB-crystallin in the absence and presence of a bound target protein, reduced α-lactalbumin. (1)H-(15)N Nuclear Overhauser Effect (NOE) values provide an accurate measure, on a residue-by-residue basis, of the backbone flexibility of polypeptides. From measurement of these NOE values, it was determined that the flexibility of the extension in αA- and αB-crystallin increased markedly at the extreme C-terminus. By contrast, upon chaperone interaction of αA-crystallin with reduced α-lactalbumin, flexibility was maintained in the extension but was distributed evenly across all residues in the extension. Two mutants of αB-crystallin in its C-terminal region: (i) I159A and I161A and (ii) K175L, have altered chaperone ability (Treweek et al. (2007) PLoS One 2, e1046). Comparison of (1)H-(15)N NOE values for these mutants with wild type αB-crystallin revealed alteration in flexibility of the extension, particularly at the extremity of K175L αB-crystallin, which may affect chaperone ability.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources