Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec;293(12):2193-201.
doi: 10.1002/ar.21229. Epub 2010 Aug 23.

Endogenous nitric oxide can act as beneficial or deleterious in the hypoxic lung depending on the reoxygenation time

Affiliations
Free article

Endogenous nitric oxide can act as beneficial or deleterious in the hypoxic lung depending on the reoxygenation time

Alma Rus et al. Anat Rec (Hoboken). 2010 Dec.
Free article

Abstract

Nitric oxide (NO) has been implicated in many pathophysiological situations in the lung, including hypoxia/reoxygenation. This work seeks to clarify the current controversy concerning the double protective/toxic role of endogenous NO under hypoxia/reoxygenation situations in the lung by using a nitric oxide synthase (NOS) inhibitor, in a novel approach to address the problems raised from assaults under such circumstances. A follow-up study was conducted in Wistar rats submitted to hypoxia/reoxygenation (hypoxia for 30 min; reoxygenation of 0 h, 48 h, and 5 days), with or without prior treatment using the nonselective NOS inhibitor L-NAME (1.5 mM, in drinking water). Lipid peroxidation, apoptosis level, protein nitration, in situ NOS activity and NO production (NOx) were analyzed. This is the first work to focus on the time-course effects of L-NAME in the adult rat lung submitted to hypoxia/reoxygenation. The results showed that after L-NAME administration, in situ NOS activity was almost completely eliminated and consequently, NOx levels fell. Lipid peroxidation and the percentage of apoptotic cells rose at the earliest reoxygenation time (0 h), but decreased in the later period (48 h and 5 days). Also nitrated protein expression decreased at 48 h and 5 days posthypoxia. These results suggest that NOS-derived NO exerts two different effects on lung hypoxia/reoxygenation injury depending on the reoxygenation time: NO has a beneficial role just after the hypoxic stimulus and a deleterious effect in the later reoxygenation times. Moreover, we propose that this dual role of NO depends directly on the producer NOS isoform.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources